• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of innovative radiotherapy support system with predictable prognosis in head and neck cancer

Research Project

Project/Area Number 17K15808
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Medical Physics and Radiological Technology
Research InstitutionTeikyo University

Principal Investigator

Kamezawa Hidemi  帝京大学, 福岡医療技術学部, 講師 (50759503)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywords頭頸部癌 / 予後予測 / 生存率 / 悪性度 / radiomics / 耳下腺癌 / 悪性度予測 / レディオミクス / Radiomics / 深層学習 / 医学物理学 / 放射線治療支援
Outline of Final Research Achievements

The purpose of this study was to develop an innovative radiotherapy support system with predictable prognosis in head and neck cancer. We could predict the 2-year survival of squamous cell head and neck cancer and malignancy glade of parotid gland cancer by using some machine learning approaches. Therefore, we could develop an innovative radiotherapy support system for squamous cell head and neck cancer and parotid gland cancer.
The proposed approach could support the decision making of the radiotherapy approach for the low 2-year survival squamous cell head and neck cancer and high glade parotid gland cancer.

Academic Significance and Societal Importance of the Research Achievements

本研究で開発した放射線治療支援システムは、治療前にあらかじめ扁平上皮頭頸部癌の2年生存率や高悪性度の耳下腺癌を予測できるため、それらの癌に最適な治療方針を検討する上で有用である。また、医用画像のみの入力で予測が可能であるため、非侵襲的であることは医学的意義も大きい。
さらには、頭頸部癌のみならず、他部位のさまざまな癌においても応用出来る可能性を持っており、波及効果も高いと考える。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (9 results)

All 2020 2019 2018

All Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (6 results) (of which Int'l Joint Research: 5 results)

  • [Journal Article] MR-radiomic biopsy for estimation of malignancy grade in parotid gland cancer2020

    • Author(s)
      Kamezawa Hidemi、Arimura Hidetaka、Yasumatsu Ryuji、Ninomiya Kenta
    • Journal Title

      Proc. SPIE 11318, Medical Imaging 2020: Imaging Informatics for Healthcare, Research, and Applications, 1131818

      Volume: 11318 Pages: 41-41

    • DOI

      10.1117/12.2549462

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Radiomics-based malignancy prediction of parotid gland tumor2019

    • Author(s)
      H. Kamezawa, H. Arimura, R. Yasumatsu, K. Ninomiya, S. Haseai
    • Journal Title

      Proc. SPIE 11050

      Volume: - Pages: 26-26

    • DOI

      10.1117/12.2521362

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Survival prediction of squamous cell head and neck cancer patients based on radiomic features selected from lung cancer patients using artificial neural network2018

    • Author(s)
      H. Kamezawa, H. Arimura, M. Soufi
    • Journal Title

      Proc. SPIE 10579

      Volume: - Pages: 43-43

    • DOI

      10.1117/12.2293415

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] MR-radiomic biopsy for estimation of malignancy grade in parotid gland cancer2020

    • Author(s)
      Hidemi Kamezawa, Hidetaka Arimura, Ryuji Yasumatsu, Kenta Ninomiya
    • Organizer
      SPIE Medical Imaging 2020
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Radiomics-based malignancy estimation of parotid gland tumor using preoperative magnetic resonance images2019

    • Author(s)
      Hidemi Kamezawa, Hidetaka Arimura, Ryuji Yasumatsu, Soufi Mazen, Kenta Ninomiya, Shu Haseai
    • Organizer
      第117回日本医学物理学会学術大会
    • Related Report
      2019 Annual Research Report
  • [Presentation] Deep learning-based malignancy grade prediction models of parotid gland cancer using preoperative MR images2019

    • Author(s)
      Hidemi Kamezawa, Hidetaka Arimura, Ryuji Yasumatsu, Kenta Ninomiya, Shu Haseai
    • Organizer
      American Association of Physicists in Medicine 61th annual meeting
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Radiomics-based Malignancy Prediction of Parotid Gland Tumor2019

    • Author(s)
      H. Kamezawa, H. Arimura, R. Yasumatsu, K. Ninomiya, S. Haseai
    • Organizer
      IFMIA2019
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Radiomics-based prediction of malignant potential in patients with parotid gland cancer2018

    • Author(s)
      Hidemi Kamezawa, Hidetaka Arimura, Ryuji Yasumatsu, Mazen Souf, Shu Haseai and Kenta Ninomiya
    • Organizer
      RSNA 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Survival prediction of squamous cell head and neck cancer patients based on radiomic features selected from lung cancer patients using artificial neural network2018

    • Author(s)
      H. Kamezawa, H. Arimura, M. Soufi
    • Organizer
      SPIE 10579, Medical Imaging 2018
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi