Research Project
Grant-in-Aid for Young Scientists (B)
The aim of this research was to develop computer-aided detection(CADe) and computer-aided diagnosis(CADx) system for colonoscopy and evaluate its diagnostic performance.1.We developed CADx system based on ultra-magnifying endoscopy for differentiating colonic neoplasms and non-neoplasms. Support vector machine which is a traditional machine learning method, was applied for the CADx and achieved 97.4% accuracy. 2.The CADe system that works on conventional endoscopy, was developed using 3-dimensional convolution neural network. We prepared fully annotated 1.8 million frame of colonoscopy videos for machine learning.The CADe system achieved 90% sensitivity for colorectal lesion based on video based analysis.(Misawa M, et al. Gastroenterology 2018)
大腸内視鏡におけるリアルタイム病変検出・診断は、近年重要視され高精度化が要求されている。これは病変の見落としを防ぐことで、大腸癌罹患を予防し、加えて治療不要な非腫瘍性ポリープを確実に診断することで、かかる治療・病理検査を省略できるためである。本研究では大腸内視鏡における、病変の発見、病変の診断を人工知能で支援し、どのようなレベルの医師であっっても均てん化した医療が提供できる可能性を示した。これにより、本邦がん罹患数1位のがん種である大腸がんを抑制することが期待される。
All 2019 2018 2017
All Journal Article (8 results) (of which Int'l Joint Research: 3 results, Peer Reviewed: 8 results, Open Access: 6 results) Presentation (7 results) (of which Int'l Joint Research: 3 results, Invited: 1 results)
Gastroenterology
Volume: epub ahead of print Issue: 8 Pages: 2027-2029
10.1053/j.gastro.2018.04.003
Gastrointest Endosc
Volume: 89 Issue: 2 Pages: 408-415
10.1016/j.gie.2018.09.024
VideoGIE
Volume: 4 Issue: 1 Pages: 7-10
10.1016/j.vgie.2018.10.006
Ann Intern Med
Volume: 169 Issue: 6 Pages: 357-366
10.7326/m18-0249
Endoscopy
Volume: 50 Issue: 03 Pages: 230-240
10.1055/s-0043-122385
Volume: 49 Issue: 08 Pages: 799-802
10.1055/s-0043-105486
Volume: 49 Issue: 08 Pages: 813-819
10.1055/s-0043-109430
Endoscopy international open
Volume: 5 Issue: 08 Pages: E769-E774
10.1055/s-0043-113562