Project/Area Number |
17K16366
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Psychiatric science
|
Research Institution | The University of Tokyo |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2019: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | 気分障害 / 脳神経画像 / MRI / NIRS / うつ病 / 双極性障害 / 脳神経疾患 / 神経科学 / 大うつ病性障害 / 脳・神経 |
Outline of Final Research Achievements |
We performed NIRS and MRI on 22 patients with major depressive disorder (MDD) and 20 patients with bipolar disorder, and examined the discrimination rates using these brain imaging indices. As a result, the combined use of NIRS and MRI indices increased the discrimination rate (76.2%) compared to the use of each test measure alone (73.8%, 71.4%). And also, in a longitudinal NIRS study (1.5 years interval) of 45 patients with MDD, NIRS signals in specific brain regions fluctuated with changes in severity. The complementary use of NIRS, which can easily be performed and has high temporal resolution, and MRI, which has high spatial resolution and can evaluate the deeper brain area, may be able to differentiate mood disorders with higher accuracy. Further investigation of the effect of severity on brain imaging indices may lead to higher discrimination rates.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の結果は、より高精度の気分障害鑑別ツールの開発に向けて、複数の脳画像モダリティーを相補的に用いることの有効性を示唆するものである。これにより、NIRSやMRI以外の脳画像モダリティー、あるいは脳画像以外の生物学的指標も含めた、複数の指標による鑑別ツールの研究の推進につながる可能性がある。また、うつ症状の重症度、あるいは状態像が脳画像パラメータに影響を及ぼすことを示唆する結果は、鑑別精度をさらに高めるための今後の課題を提起するものである。
|