• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Prediction of results of radiotherapy using expression of proteins involved with repair of DNA

Research Project

Project/Area Number 17K16466
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Radiation science
Research InstitutionSapporo Medical University

Principal Investigator

HASEGAWA TOMOKAZU  札幌医科大学, 医学部, 助教 (80631168)

Project Period (FY) 2017-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2017: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Keywords放射線治療 / 前立腺癌 / 機械学習 / 人工ニューラルネットワーク / 放射線治療生物学
Outline of Final Research Achievements

We examined the application of an artificial neural network (ANN) model to predict the outcome of radiation therapy using immunohistochemical staining and clinical factors of Ku70 for prostate and hypopharyngeal cancer. Age, Gleason score, biopsy positive rate, pre-treatment PSA value, risk classification, prostate volume were used as clinical factors in analysis of prostate cancer. Similarly, in hypopharyngeal cancer, age, gender, performance status, clinical T staging and subsite were used as clinical factors.
The treatment result prediction by ANN was a result that the sensitivity, the specificity, and the area under curve (AUC) of the ROC curve based on the prediction result were all superior in prediction ability as compared with the conventional method.

Academic Significance and Societal Importance of the Research Achievements

従来の方法としては、log-rank法やcox比例ハザードモデルを用いた多変量解析により、危険度の高い因子の解析結果から予後予測が試みられている場合が多い。機械学習のアルゴリズムのひとつである人工ニューラルネットワーク(ANN)では、コンピュータ上に神経細胞組織を模した構造を作成し、擬似的に神経活動を行わせることによって、線形分離し難い情報処理を行うことが可能となる。この方法は、問題となる入力信号と、その答えとなる出力信号を与え、学習させることにより、多数ある患者背景や臨床因子の中から、必要な予測因子を適切に選択することでより精度の高い予測モデルの構築を目指す。

Report

(3 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • Research Products

    (5 results)

All 2018 2017 2016

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 2 results) Presentation (2 results)

  • [Journal Article] Influence of PD-L1 expression in immune cells on the response to radiation therapy in patients with oropharyngeal squamous cell carcinoma2018

    • Author(s)
      Fukushima Yuki、Someya Masanori、Nakata Kensei、Hori Masakazu、Kitagawa Mio、Hasegawa Tomokazu、Tsuchiya Takaaki、Gocho Toshio、Ikeda Hikaru、Hirohashi Yoshihiko、Torigoe Toshihiko、Sugita Shintaro、Hasegawa Tadashi、Himi Tetsuo、Sakata Koh-ichi
    • Journal Title

      Radiotherapy and Oncology

      Volume: 129 Issue: 2 Pages: 409-414

    • DOI

      10.1016/j.radonc.2018.08.023

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Prediction of acute gastrointestinal and genitourinary radiation toxicity in prostate cancer patients using lymphocyte microRNA.2018

    • Author(s)
      Someya M, Hori M, Gocho T, Nakata K, Tsuchiya T, Kitagawa M, Hasegawa T, Fukushima Y and Sakata KI
    • Journal Title

      Japanese journal of clinical oncology

      Volume: 48(2) Issue: 2 Pages: 167-174

    • DOI

      10.1093/jjco/hyx181

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Local tumor control and DNA-PK activity of peripheral blood lymphocytes in prostate cancer patients receiving radiotherapy.2016

    • Author(s)
      Someya M, Hasegawa T, Hori M, Matsumoto Y, Nakata K, Masumori N, Sakata K.
    • Journal Title

      Journal of Radiation Research

      Volume: 58 Issue: 2 Pages: 225-231

    • DOI

      10.1093/jrr/rrw099

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 当院で腔内照射を施行した子宮頸癌の線量解析2018

    • Author(s)
      染谷正則、長谷川智一、土屋高旭、北川未央、後町俊夫、福島悠希、堀正和、中田健生、坂田耕一、高田優、三浦勝利
    • Organizer
      日本放射線腫瘍学会 第31回学術大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Ku70発現と人工ニューラルネットワークによる放射線治療結果の予測2017

    • Author(s)
      長谷川智一,染谷正則,馬込大貴,後町俊夫,福島悠希,土屋高旭,北川未央,堀正和,中田健生,坂田耕一
    • Organizer
      日本放射線腫瘍学会第30回学術大会
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi