• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of an intelligent cystoscopic bladder cancer diagnosis system

Research Project

Project/Area Number 17K16775
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Urology
Research InstitutionUniversity of Tsukuba

Principal Investigator

Ikeda Atsushi  筑波大学, 附属病院, 病院講師 (50789146)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Keywords膀胱癌 / 人工知能 / 膀胱内視鏡検査 / 転移学習 / 画像解析 / 深層学習 / 幾何学的特徴 / 識別 / 癌
Outline of Final Research Achievements

Non-muscle-invasive bladder cancer is diagnosed, treated, and monitored by cystoscopy. Artificial intelligence is increasingly used to augment tumor detection, but its performance is hindered by the limited availability of cystoscopic images to form a large training dataset. We developed a tumor-detection tool using deep learning-based step-wise transfer learning with a CNN that was pre-trained with general images and further trained with gastroscopic images to better extract features in cystoscopic images. This model was additionally trained using the cystoscopic images. Our results showed that this step-wise organic transfer learning approach yielded a model with better accuracy in differentiating between images of normal and tumor tissues than models trained with only one or two of these datasets. We further demonstrated that the diagnostic accuracy of the AI system was equivalent to that of urologists.

Academic Significance and Societal Importance of the Research Achievements

人工知能(AI)は膀胱癌の診療において極めて有用なツールになる可能性がある。膀胱内視鏡画像における正常と異常を判別する診断レベルは、泌尿器科専門医とほぼ同等であることが示されてた。膀胱内視鏡検査の術者の診断レベルを客観的に評価できる可能性も示され、AIには医師の教育を助ける役割も期待される。医師の習熟度に合わせたアドバイスが可能となれば、膀胱内視鏡検査における効率のよい観察と診断のレベル向上が見込まれる。さらにリアルタイムのAIによる診断支援が加われば、術者の経験による診断のばらつきを解消させることができ、結果として、すべての膀胱癌患者の治療成績向上が期待される。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (15 results)

All 2020 2019 2018 2017

All Journal Article (4 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (11 results) (of which Int'l Joint Research: 3 results,  Invited: 2 results)

  • [Journal Article] Support System of Cystoscopic Diagnosis for Bladder Cancer Based on Artificial Intelligence2020

    • Author(s)
      Ikeda Atsushi、Nosato Hirokazu、Kochi Yuta、Kojima Takahiro、Kawai Koji、Sakanashi Hidenori、Murakawa Masahiro、Nishiyama Hiroyuki
    • Journal Title

      Journal of Endourology

      Volume: 34 Issue: 3 Pages: 352-358

    • DOI

      10.1089/end.2019.0509

    • NAID

      120007132998

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] AIを利用した膀胱癌の内視鏡診断2019

    • Author(s)
      池田 篤史・野里 博和・西山 博之
    • Journal Title

      Precision Medicine

      Volume: 2 Pages: 230-233

    • Related Report
      2019 Annual Research Report
  • [Journal Article] 筋層非浸潤膀胱癌の新規診断法の確立に向けて2019

    • Author(s)
      池田篤史、野里博和、西山博之
    • Journal Title

      泌尿器外科

      Volume: 32 Pages: 613-615

    • Related Report
      2019 Annual Research Report
  • [Journal Article] AIを利用した膀胱癌の内視鏡診断2019

    • Author(s)
      池田篤史、野里博和、西山博之
    • Journal Title

      Precision Medicine

      Volume: 3 Pages: 230-233

    • Related Report
      2018 Research-status Report
  • [Presentation] Are urologists superior to artificial intelligence in cystoscopy-based diagnosis?2020

    • Author(s)
      Atsushi Ikeda, Yuta Kochi, Hirokazu Nosato, Takahiro Kojima, Hidenori Sakanashi, Masahiro Murakawa, Hiroyuki Nishiyama
    • Organizer
      The 35th Annual EAU Congress
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 膀胱内視鏡検査におけるデータ利活用による画像診断精度向上技術2020

    • Author(s)
      野里博和、河内祐太、池田篤史、村川正宏、坂無英徳
    • Organizer
      第2回日本メディカルAI学会学術集会
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 深層学習に基づいた膀胱内視鏡診断支援システム2019

    • Author(s)
      池田篤史,星野勇太郎,河内祐太,野里博和,小島崇宏,河合弘二,坂無英徳,村川正宏,中島悠,西山博之
    • Organizer
      第107回日本泌尿器科学会総会
    • Related Report
      2019 Annual Research Report
  • [Presentation] あなたの診断レベル測ります。~術者における膀胱内視鏡診断練度の客観的評価~2019

    • Author(s)
      池田篤史,河内祐太,野里博和,星昭夫、木村友和、小島崇宏,河合弘二,坂無英徳,村川正宏,西山博之
    • Organizer
      第33回日本泌尿器内視鏡学会総会
    • Related Report
      2019 Annual Research Report
  • [Presentation] 人工知能を利用した次世代膀胱内視鏡診断支援システムの構築2019

    • Author(s)
      池田篤史、野里博和
    • Organizer
      MeWCAシンポジウム2019
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Stepwise transfer learning in convolutional neural networks for the cystoscopic diagnosis of bladder cancer using gastroscopic images2019

    • Author(s)
      池田篤史
    • Organizer
      the 34th Annual European Association of Urology Congress
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 膀胱癌の内視鏡診断における人工知能を利用した客観的評価2018

    • Author(s)
      池田篤史
    • Organizer
      第32回日本泌尿器内視鏡学会総会
    • Related Report
      2018 Research-status Report
  • [Presentation] 胃内視鏡画像を活用した段階的転移学習による膀胱内視鏡診断支援2018

    • Author(s)
      野里博和、池田篤史
    • Organizer
      第1回日本メディカルAI学会
    • Related Report
      2018 Research-status Report
  • [Presentation] Objective evaluation for the cystoscopic diagnosis of bladder cancer using artificial intelligence2018

    • Author(s)
      Atsushi Ikeda
    • Organizer
      the 33rd Annual European Association of Urology Congress Copenhagen
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] 膀胱癌の内視鏡診断における人工知能を利用した平坦病変の客観的評価2018

    • Author(s)
      池田篤史
    • Organizer
      第106回日本泌尿器科学会総会
    • Related Report
      2017 Research-status Report
  • [Presentation] 膀胱癌の内視鏡診断における人工知能を利用した客観的評価2017

    • Author(s)
      池田篤史
    • Organizer
      第31回日本泌尿器内視鏡学会総会
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi