Design of electrode-electrolyte interface based on hybrid materials for all-solid-state lithium batteries using oxide solid electrolytes
Project/Area Number |
17K17559
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Inorganic materials/Physical properties
Inorganic industrial materials
|
Research Institution | Hokkaido University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | hybrid materials / interfacial resistance / Li-metal batteries / oxide solid electrolyte / Hybrid Material / garnet solid electrolyte / lithium conductor / inorganic buffer layer / all-solid-state battery |
Outline of Final Research Achievements |
All-solid-state lithium secondary batteries based on oxide-type solid electrolytes are considered as a potential alternative for high energy density batteries, however, the high interfacial resistance between the electrodes and solid electrolyte has limited their real application. In this project, an inorganic-organic hybrid material with polyethylene oxide chains was synthesized and used as interfacial material between garnet-type solid electrolyte and high-potential electrode. The main results of this research are summarized: (1) Hybrid material with Li-ion conductivities of 10-5 S cm-1 at RT, the activation energy of around 0.5 eV, lithium-ion transport number up to 0.4, and electrochemical windows up to 5V were obtained. (2) The interface between solid electrolyte and lithium metal was improved using inorganic buffer layers. (3) All-solid-state battery operated at room temperature using a current density of 5.5 uA cm-2 achieved an initial discharge capacity of 60 mAh g-1.
|
Academic Significance and Societal Importance of the Research Achievements |
界面抵抗が高いため、全固体電池の実現は難しい。 ここでは、無機成分と有機成分を含むハイブリッド材料を使用して、全固体電池用の新しいインターフェース材料を作成しました。 ハイブリッド材料の無機部分は固体電解質と電極間の接着を改善し、有機部分はイオン経路を改善するために使用されます。 持続可能な社会の発展には、今後の取り組みが期待されます。 このプロジェクトは、申請者とプロジェクトに参加する学生の科学的および学問的な背景の成長に絶好の機会を提供しました。 これらの結果の議論から優れたコラボレーションが生まれました。 さらに、このプロジェクトを通じて、界面問題の新しい概念の導入が確立されました。
|
Report
(4 results)
Research Products
(14 results)