Gravitational field theory for topological thermal transport phenomena
Project/Area Number |
17K17604
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Mathematical physics/Fundamental condensed matter physics
Condensed matter physics I
|
Research Institution | Kyushu University (2022) Tohoku University (2019-2021) Institute of Physical and Chemical Research (2017-2018) |
Principal Investigator |
Nakai Ryota 九州大学, 理学研究院, 特任助教 (30638987)
|
Project Period (FY) |
2017-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | 熱伝導 / 重力場 / 非相反応答 / 非エルミート / 境界条件 / ブースト変形 / 熱輸送 / ドルーデ重み / 量子ホール効果 / ジョセフソン効果 / 奇周波数超伝導 / ワイル超伝導 / 熱ホール効果 / 超格子 / ワイル半金属 / 熱応答 / 非相反性 / トポロジカル絶縁体 / トポロジカル超伝導体 / 物性理論 |
Outline of Final Research Achievements |
Thermal transport theory of electrons from the viewpoint of quantum mechanics was studied. A new formula for estimating the thermal conductivity was found by exploiting the relationship between thermal conduction and coordinate transformations. This formula links the quantum mechanical property of the boundary conditions of the wavefunction and the thermal conductivity. A similar formula for the electrical conduction has been known as the Kohn's formula, and hence our formula can be viewed as the thermal version of the Kohn's formula. The theory of nonreciprocity of the thermal and thermoelectric conductions was also studied.
|
Academic Significance and Societal Importance of the Research Achievements |
固体物質の熱伝導現象の中でも近年特に量子力学的性質が強く現れる現象が実験物理の分野でも重要になりつつある。本研究で導入された公式は広く一般の量子系に適用可能であるため、熱伝導現象の量子力学的側面の理解が深まることが期待される。また非相反熱応答現象は別の言葉で言うと順方向と逆方向で熱の流れやすさが異なるという整流効果である。電気伝導の整流効果を利用したダイオードやトランジスタのように熱の非相反性の強い物質が開発されれば、固体物質中の熱を自在に操ることができ、排熱の有効利用などの熱に関する問題の解決手段となることが期待される。
|
Report
(7 results)
Research Products
(26 results)