Flexible flapping mechanism inspired from the musculoskeletal system of insect
Project/Area Number |
17K17638
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Fluid engineering
Intelligent mechanics/Mechanical systems
|
Research Institution | Chiba University |
Principal Investigator |
|
Research Collaborator |
Liu Hao
|
Project Period (FY) |
2017-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2017: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | 筋骨格系 / 流体構造連成 / ドローン / 力学的フィードバック / 羽ばたき飛行 / 柔軟性 / 羽ばたき翼 / 筋骨格 / 機械的フィードバック / 生物規範 / 昆虫 |
Outline of Final Research Achievements |
Insects flap their flexible wings using their flexible musculoskeletal system in the thorax, unlike human-made aerial systems, called drones. In order to design highly efficient and robust bio-inspired drones, the effects of the flexibility in the wings and the thorax of insects on the aerodynamic performance and gust response were investigated by incorporating a simplified musculoskeletal model into our theoretical, numerical and experimental models. Through the comprehensive analyses, the flexible thorax was found to reduce the power consumption by the resonance, but reduce the stability under the gust by the passive alterations of the wing kinematics. However, the combination with flexible wings was found to mitigate the gust response passively without sacrificing efficiency. These results point out the importance of mechanical feedback through the fluid-structure interaction between the flexible mechanisms and the unsteady aerodynamics of flapping wings for the design of drones.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では,昆虫などの飛翔生物が,適切な柔軟性を持つ翼や筋骨格系と周囲の気流の力学的な相互作用を受動的に利用することで,飛翔体の効率や安定性を向上させている可能性があることが明らかとなった.ドローンによる「空の産業革命」をさらに推進するには,ドローンが墜落しにくく,墜落しても安全であることが必要であり,飛翔生物のような適切な柔軟性をドローンに導入することによって,過酷な自然に対応しつつ,自然エネルギーを効率良く利用する,安全な次世代型ドローンの開発ができると考えられる.
|
Report
(3 results)
Research Products
(15 results)