Project/Area Number |
17K17885
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
System genome science
Biofunction/Bioprocess
|
Research Institution | Institute of Physical and Chemical Research (2021-2022) Nara Institute of Science and Technology (2017-2020) |
Principal Investigator |
Ai Muto 国立研究開発法人理化学研究所, 生命機能科学研究センター, 訪問研究員 (80730506)
|
Project Period (FY) |
2017-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
|
Keywords | 合成致死 / 遺伝的相互作用 / 代謝経路 / 大腸菌遺伝子欠失株ライブラリ / 接合伝達 / 代謝パスウェイ / 新規代謝経路 / システム生物学 / 遺伝子欠失株ライブラリ / バイオインフォマティクス / ゲノム / 細菌 / 応用微生物 / 酵素 / バイオテクノロジー |
Outline of Final Research Achievements |
In cells, substances are synthesized or degraded through a chain of enzymatic reactions. This chain of reactions is called metabolic pathways. To utilize these metabolic pathways for the production of useful compounds and the degradation of harmful substances, metabolic models integrating known metabolic pathways are being constructed. In this study, genes related to metabolic pathways were screened by comprehensive measurements of the growth of double gene deletion strains of Escherichia coli. As a result, metabolic function complementation relationships between genes were observed that could not be explained by existing metabolic models. These complementary relationships may lead to the discovery of novel metabolic functions and are expected to contribute to the construction of more sophisticated metabolic models.
|
Academic Significance and Societal Importance of the Research Achievements |
これまでの代謝経路の発見は、研究者の経験則や発想に基づき、個別の遺伝子破壊実験などを経て為されてきた。本研究は、網羅的スクリーニングによる代謝寄与遺伝子情報を提供することにより、新規代謝経路の効率的な発見を支援するものである。本研究で得られた大腸菌遺伝子間の合成致死関係、及びそこから新たに示唆された遺伝子の新規代謝機能によって、より精度の高い代謝モデルを構築することで、生物工学や合成生物学の発展を加速できるものと期待される。
|