• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of 3D-DSA using by Deep Learning

Research Project

Project/Area Number 17K18291
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Medical Physics and Radiological Technology
Radiation science
Research InstitutionHiroshima International University

Principal Investigator

Yamamoto Megumi  広島国際大学, 保健医療学部, 講師 (50412333)

Project Period (FY) 2017-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Keywords血管造影 / DSA / 深層学習 / アーチファクト / Deep Learning / モーションアーチファクト / ニューラルネットワーク / 人工知能 / アンギオ / 医用画像処理 / 放射線科学 / 血管 / 情報工学
Outline of Final Research Achievements

DSA (Digital Subtraction Angiography) technique is used for cerebral angiography and endovascular treatment (IVR). It provides high-definition images and enables diagnosis of blood vessel diseases from various angles of patients. However, DSA has two problems. (1) Since,it is extremely sensitive to the movement of the examinee and it is resulted in comparatively large artifacts, the organ to apply DSA is limited. (2) Increased radiation dose and longer examination time due to before contrast imaging for mask image acquisition. The purpose of this study was to develop a new DSA method that solves the above two problems using deep learning based technique.
In developed method, mask image acquisition is not required. Moreover, artifacts of DSA image are not visualized when patient or organ is moved. Stopping breathing of examinee is no longer needed at DSA study by developed method.

Academic Significance and Societal Importance of the Research Achievements

本研究ではDSAのマスク画像作成に,深層学習の一種であるCNNを使用する.本研究ではライブ画像からマスク画像を作り出す画像処理に直接,深層学習を使用した.これにより造影前のマスク画像取得が不要になるため,任意の角度でDSAが作成でき被曝と検査時間の短縮に繋がる.本研究成果は,DSAの適用部位を限定することなく,通常の血管造影像やDSAでは観察できなかったあらゆる部位の微細血管までを,立体的に様々な角度から把握することができ,従来の血管造影では明らかにならなかった血管の形態や質,内膜や血栓・石灰化などの三次元的位置を把握でき,診断や手術において非常に有用である,

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (14 results)

All 2022 2019 2018 2017

All Journal Article (5 results) (of which Peer Reviewed: 1 results) Presentation (8 results) (of which Int'l Joint Research: 3 results) Book (1 results)

  • [Journal Article] 深層学習を用いた冠動脈造影におけるDSA法の開発2022

    • Author(s)
      山本めぐみ,大倉保彦
    • Journal Title

      日本放射線技術学会

      Volume: 78(2) Pages: 129-139

    • NAID

      130008161712

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A new method for reducing large motion artifacts of DSA based on deep learning technique2019

    • Author(s)
      M.Yamamoto, Y.Okura, H.kawata, N.Yamamoto
    • Journal Title

      Journal of the International Foundation for Computer Assisted Radiology and Surgery

      Volume: volume14/spplement1

    • Related Report
      2019 Research-status Report
  • [Journal Article] 機械学習を用いた冠動脈DSAに関する研究2017

    • Author(s)
      山本めぐみ 大倉保彦
    • Journal Title

      第36回日本医用画像工学会大会

      Volume: ー Pages: 249-252

    • Related Report
      2017 Research-status Report
  • [Journal Article] 対向データを利用した補間法によるSPECT再構成法の開発2017

    • Author(s)
      山口雄貴 大倉保彦 山本めぐみ
    • Journal Title

      第36回日本医用画像工学会大会

      Volume: ー Pages: 365-371

    • Related Report
      2017 Research-status Report
  • [Journal Article] A method for reducing motion artifacts of DSA using deep learning technique2017

    • Author(s)
      Megumi Yamamoto, Yasuhiko Okura
    • Journal Title

      医学物理

      Volume: 37, sup3 Pages: 184-184

    • Related Report
      2017 Research-status Report
  • [Presentation] A method for reducing large motion artifacts of DSA based on deep learning technique2019

    • Author(s)
      山本めぐみ,大倉保彦,川田秀道, 山本直樹
    • Organizer
      日本放射線技術学会第75回総会学術大会
    • Related Report
      2019 Research-status Report
  • [Presentation] A new method for reducing large motion artifacts of DSA based on deep learning technique2019

    • Author(s)
      M.Yamamoto, Y.Okura, H.kawata, N.Yamamoto
    • Organizer
      International Journal of Computer Assisted Radiology and Surgery
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Development of a new method to reduce large motion artifacts for DSA used by Deep Learning2018

    • Author(s)
      Megumi Yamamoto
    • Organizer
      IUPESM2018-World Congress on Medical Physics & Biomedical Engineering
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 機械学習を用いた冠動脈DSAに関する研究2017

    • Author(s)
      山本めぐみ, 大倉保彦
    • Organizer
      第36回日本医用画像工学会
    • Related Report
      2017 Research-status Report
  • [Presentation] 対向データを利用した補間法によるSPECT再構成法の開発2017

    • Author(s)
      山口雄貴, 大倉保彦, 山本めぐみ
    • Organizer
      第36回日本医用画像工学会
    • Related Report
      2017 Research-status Report
  • [Presentation] A method for reducing motion artifacts of DSA using deep learning technique2017

    • Author(s)
      Megumi Yamamoto, Yasuhiko Okura
    • Organizer
      114th Scientific Meeting of JSMP
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Development of a New Digital Subtraction Angiography Technique for Coronary Artery via Machine Learning2017

    • Author(s)
      Megumi Yamamoto, Yasuhiko Okura
    • Organizer
      第73回日本放射線技術学会総会学術大会
    • Related Report
      2017 Research-status Report
  • [Presentation] DSAへの深層学習の応用2017

    • Author(s)
      山本めぐみ
    • Organizer
      第45回日本放射線技術学会秋季学術大会
    • Related Report
      2017 Research-status Report
  • [Book] スマート医療テクノロジー2019

    • Author(s)
      村垣善浩
    • Publisher
      (株)エヌ・ティー・エス
    • ISBN
      9784860436193
    • Related Report
      2019 Research-status Report

URL: 

Published: 2017-04-28   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi