• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Context Concept Acquisition and Application for Robots Using VR Environment

Research Project

Project/Area Number 17K18331
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Intelligent robotics
Intelligent informatics
Research InstitutionNational Institute of Informatics

Principal Investigator

Sakato Tatsuya  国立情報学研究所, 情報学プリンシプル研究系, 特任研究員 (10780679)

Project Period (FY) 2017-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords能動学習 / 知能ロボット / 知識獲得 / 質問生成 / 概念獲得 / Human-Robot Interaction / Virtual Reality / 行動決定 / 知能ロボティクス
Outline of Final Research Achievements

In this research, we clarified a learning method for robots to perform efficient learning using active learning. The target problem is context-dependent labeling to motion patterns. The place where a motion pattern is performed, and the tool used for the motion pattern are taken as context. The combination of context and a motion pattern is taken as a scene. A system labels scenes using the framework of active learning. By using closed questions according to the progress of learning in addition to conventional uncertainty sampling, the system achieved the target accuracy rate with fewer questions.

Academic Significance and Societal Importance of the Research Achievements

ロボットが我々の社会の中での人‐ロボットインタラクションに必要な文脈概念を獲得するには、大量の行動の観測データが必要となる。仮想現実環境におけるロボットの能動的な環境、文脈提示による知識獲得手法を確立することができれば、実世界の環境では集めることの難しい大量の観測データを効率的に収集でき、その学習結果は、実世界ロボットの有効な振る舞いのために活用することができると考えられる。本研究では仮想現実環境と能動学習を組み合わせることで、ロボットの効率的な学習のための文脈提示手法を明らかにした。

Report

(3 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • Research Products

    (2 results)

All 2018 2017

All Presentation (2 results) (of which Int'l Joint Research: 2 results)

  • [Presentation] Evaluation of Rapid Active Learning Method for Motion Label Learning in Variable VR Environment2018

    • Author(s)
      Tatsuya Sakato and Tetsunari Inamura
    • Organizer
      The 2018 IEEE International Conference on Robotics and Biomimetics (IEEE ROBIO 2018)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A Question Selection Method for Active Learning of Context-depending Motion Labels2017

    • Author(s)
      Tatsuya Sakato and Tetsunari Inamura
    • Organizer
      2nd Workshop on Semantic Policy and Action Representations for Autonomous Robots (SPAR)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2017-04-28   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi