• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Theoretical Study of Magnetization Switching Dynamics Using Spin Wave Resonance

Research Project

Project/Area Number 17K18412
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Applied materials
Nanostructural physics
Research InstitutionNational Institute of Advanced Industrial Science and Technology

Principal Investigator

Yamaji Toshiki  国立研究開発法人産業技術総合研究所, エレクトロニクス・製造領域, 主任研究員 (30432355)

Project Period (FY) 2017-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Keywordsスピン波 / 磁化反転 / 理論研究 / 磁気記録 / 超高密度磁気記録 / マイクロ波アシスト磁化反転 / stochastic LLG方程式 / ランジュバン方程式 / 電圧制御磁化反転 / 書き込みエラー率 / ダンピング定数 / 臨界膜厚 / 理論計算 / スピントロニクス / 物性理論 / デバイス設計
Outline of Final Research Achievements

The magnetization switching in a perpendicularly magnetized nanomagnet by applying a circularly polarized rf field is analyzed as a function of the thickness (d) of the specimen using an effective one-dimensional model. It is found that there exist two kinds of critical thicknesses, dc1 and dc2 ( ≧ dc1). When d < dc1, the switching mode is uniform type which is well described by a macro-spin model. On the other hand, when dc1 ≦ d < dc2, the switching mode is non-uniform type, whereas the rf frequency dependence of the switching field is the same as the one with d < dc1. In the case of d ≧ dc2, the critical rf frequency at which the switching field takes a minimum value, increases. The results indicate that the switching field is more effectively reduced than the conventional microwave-assisted switching.

Academic Significance and Societal Importance of the Research Achievements

従来の手法のようなエネルギーアシストやトルクを利用するのではなく、スピン波共鳴を磁化反転低減に利用する手法であるスピン波アシスト磁化反転の理論構築を行い、スピン波アシスト磁化反転の実験結果に対して理論的裏付けを与える重要な研究である。スピン波を介在した磁化反転ダイナミクスという未開拓な物理理論を構築する点で学術的意義があり、垂直磁気記録におけるトリレンマを打破し5 Tbit/in2を超える次世代超高密度磁気記録媒体の開発に繋がる点で社会的(産業的)意義がある。スピン波アシスト磁化反転が実用化されれば社会的インパクトが非常に大きいと考えられる。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (5 results)

All 2018 2017

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (4 results) (of which Int'l Joint Research: 3 results)

  • [Journal Article] Critical thickness for spin wave-assisted switching of magnetization in a perpendicularly magnetized nanomagnet2018

    • Author(s)
      Toshiki Yamaji and Hiroshi Imamura
    • Journal Title

      Applied Physics Letters

      Volume: 112 Issue: 20 Pages: 202406-202406

    • DOI

      10.1063/1.5029219

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Theoretical study of spin wave-assisted switching of magnetization in a perpendicularly magnetized nanomagnet2018

    • Author(s)
      山路俊樹、今村裕志
    • Organizer
      TMRC2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] THEORETICAL STUDY OF SPIN WAVE EXCITATION IN PERPENDICULARLY MAGNETIZED SINGLE LAYER2017

    • Author(s)
      山路俊樹、今村裕志
    • Organizer
      TMRC2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] 単層垂直磁性体におけるスピン波アシスト 磁化反転の膜厚依存性に関する理論解析2017

    • Author(s)
      山路俊樹、今村裕志
    • Organizer
      日本物理学会2017年秋季大会
    • Related Report
      2017 Research-status Report
  • [Presentation] Critical Thickness for Spin Wave-Assisted Switching of Magnetization in a Perpendicularly Magnetized Nanomagnet2017

    • Author(s)
      山路俊樹、今村裕志
    • Organizer
      2017MMM
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2017-04-28   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi