Establishment of basic technology for massively parallel and compressible LES by higher order unstructured grid method
Project/Area Number |
17K18427
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Fluid engineering
Computational science
|
Research Institution | Japan Aerospace EXploration Agency |
Principal Investigator |
Haga Takanori 国立研究開発法人宇宙航空研究開発機構, 研究開発部門, 研究開発員 (30646930)
|
Research Collaborator |
KAWAI soshi
ABE yoshiaki
|
Project Period (FY) |
2017-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2018: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2017: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
|
Keywords | 数値流体力学 / 先進アルゴリズム / LES / 有限要素法 / 並列計算 / 流体工学 / 圧縮性流れ / 流束再構築法 / 高次精度 / 非構造格子 / 重合格子 / 大規模並列 / 高次精度非構造格子法 / 大規模並列計算 / ラージエディ・シミュレーション / 圧縮性流体 |
Outline of Final Research Achievements |
This research aims to improve numerical simulation of compressible turbulence important in the aerospace engineering field and to use it in practical design. In order to realize this, we have developed a high-speed, massively parallel solver using a high-order unstructured grid method, which has high adaptability to complex shapes and excellent resolution of turbulent flow. In order to meet the following requirements that are essential for the practical application of this method, we proposed basic technologies that overcome the conventional problems. 1) Establishment of physical model and numerical scheme compatible with stability and high accuracy, 2) Adaptation to complex shape, 3) Reduction of computational time. We applied this method to the benchmark problems of compressible turbulent flow and the aeroacoustic problems of multiple supersonic jets, and confirmed its superior performance.
|
Academic Significance and Societal Importance of the Research Achievements |
高次精度・非構造格子法の研究は特に海外で数多く行われているが、従来法と比べて安定性が低く、計算コストが高いという欠点が指摘されてきた。本研究で提案した基本技術は新規性が高く、不連続有限要素法に分類される他の手法にも適用可能である。今後より複雑な形状への適用が求められるが、圧縮性乱流の実用的な問題に対して従来手法と比べ少ない計算コストで大幅な解像度の向上が得られることを示した。メニーコア化が進む次世代の計算機環境でも高い性能が期待でき、高速な実用ソルバーとしての活用が期待される。
|
Report
(3 results)
Research Products
(11 results)