Project/Area Number |
17K18430
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Electron device/Electronic equipment
Measurement engineering
|
Research Institution | Tokyo Metropolitan Industrial Technology Research Institute |
Principal Investigator |
Miyashit Yuito 地方独立行政法人東京都立産業技術研究センター, 開発本部開発第一部電気電子技術グループ, 副主任研究員 (50780988)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | マイクロレンズ / 微細加工 / リソグラフィ / マイクロレンズアレイ / ナノインプリント / フォトニックナノジェット / 電気光学ポリマー / マイクロ・ナノデバイス / 光デバイス |
Outline of Final Research Achievements |
In this study, microlens models were analyzed by Finite Difference-Time Domain (FDTD) simulation in order to select optimal structure. The process to fabricate microlenses, which obtained by the simulation is as follows. First, hemispheric recesses with diameterscules. of 3-15 micrometor were formed by a nanoimprint method on a polydimethylsiloxane(PDMS) substrate. Then, a polymethyl methacrylate(PMMA) resin solution was coated on the PDMS substrate and dried by heating. Finally, spherical PMMA lens was formed at where hemispheric recesses located by the surface tension in drying process. As a results, optimal lens structure was obtained under the conditions using 7.5 to 10.0 wt% of the PMMA solution. The optical measurements of the lens revealed that focused beam has the diameter of approximately 800 nm and the focal depth of 3 to 4 micrometor. Moreover, this process was possible also with PMMA solutions containing 100~250mM of other functional organic mole
|
Academic Significance and Societal Importance of the Research Achievements |
マイクロレンズはセンサ等に多く用いられる他、フォトニックナノジェット等への応用でも近年注目されている。我々はマイクロレンズを形成するための新たなプロセスを開発した。本研究では、数マイクロメートル~数十マイクロメートルの直径のレンズをフレキシブル基板上に一括に成形する手法を開発した。本手法で成形されたレンズは球体に近く、集光したビームを直径数が約800nmのスポットに絞り込める性能を有していることなどから、微笑領域の検査、細胞分析デバイスへの組み込みなど、新規の光センサへの応用が期待できる。
|