• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On constructions and analyses of public key cryptosystems based on diophantine problems and problems on ideal lattices of global fields

Research Project

Project/Area Number 17K18450
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Foundations of mathematics/Applied mathematics
Theory of informatics
Research InstitutionOsaka University

Principal Investigator

Shinya Okumura  大阪大学, 工学研究科, 助教 (90786071)

Project Period (FY) 2017-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2018: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2017: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Keywords耐量子暗号 / 格子暗号 / Ring-LWE / ディオファントス方程式 / 複数のイデアルを用いた識別攻撃 / 代入攻撃 / 格子攻撃 / IE-LWE / 複数のイデアルを用いた識別 / 円分体 / 分解体 / 格子理論 / 準同型暗号 / イデアル格子暗号 / 関数体
Outline of Final Research Achievements

Attacks against cryptosystems based on Ring-Learning With Errors(LWE)problem are mainly divided to two types. One is lattice attacks, and the other is distinguish and search attacks. We compared the difficulty of Ring-LWE problems over cyclotomic fields, which are usually used, with that over decomposition fields w.r.t. some primes. As a result, we cocluded that decomposition fields do not decrease the difficulty of Ring-LWE problem. Also, we improved a known evaluation attack against a cryptosystem based on the IE-LWE problem, which is a polynomial analogue of LWE. Our improved evaluation attack is efficient and effective against recommended parameters.
We presented our results at four internal workshops (including one invited talk) and an international conference.

Academic Significance and Societal Importance of the Research Achievements

公開鍵暗号の設計には、計算困難な数学的問題が利用される。また、現在の公開鍵暗号基盤を崩壊させることができる量子計算機が十数年以内に完成すると言われている。本研究では、量子計算機完成後も安全な暗号(耐量子暗号)の設計に利用されるRing-LWE問題と利用が期待できるディオファントス問題に着目した。特に、特殊なRing-LWE問題とある種のディオファントス問題に基づく耐量子準同型暗号の候補の安全性を、既存攻撃やその改良により検証し、今後の関数体上のRing-LWE及び有理整数環上のディオファントス問題に基づく暗号の構成と安全性解析の手法の研究において、有益な知見を与える結果であると考える。

Report

(3 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • Research Products

    (5 results)

All 2019 2018

All Presentation (5 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results)

  • [Presentation] Decision Ring-LWEに対する複数のイデアルを用いた実験的安全性解析2019

    • Author(s)
      仲野 秀人
    • Organizer
      コンピュータセキュリティ研究会(CSEC)
    • Related Report
      2018 Annual Research Report
  • [Presentation] IE-LWE問題に対するt=1の代入識別攻撃について2019

    • Author(s)
      室井 謙典
    • Organizer
      コンピュータセキュリティ研究会(CSEC)
    • Related Report
      2018 Annual Research Report
  • [Presentation] An Experimental Analysis on Lattice Attacks against Ring-LWE over Decomposition Fields2018

    • Author(s)
      仲野 秀人
    • Organizer
      The 15th International Symposium on Information Theory and Its Applications (ISITA 2018)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 準同型暗号に用いるRing-LWEの安全性について2018

    • Author(s)
      寺田 翔太
    • Organizer
      2018年暗号と情報セキュリティシンポジウム
    • Related Report
      2017 Research-status Report
  • [Presentation] On the Security of Homomorphic Encryption Schemes Based on Ring-LWE Problem over Decomposition Fields2018

    • Author(s)
      奥村 伸也
    • Organizer
      代数的手法による数理暗号解析
    • Related Report
      2017 Research-status Report
    • Invited

URL: 

Published: 2017-04-28   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi