• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Investigation of the mathematical structure of bidomain models

Research Project

Project/Area Number 17K18732
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Research Field Analysis, Applied mathematics, and related fields
Research InstitutionMeiji University

Principal Investigator

Matano Hiroshi  明治大学, 研究・知財戦略機構(中野), 特任教授 (40126165)

Co-Investigator(Kenkyū-buntansha) 奈良 光紀  岩手大学, 理工学部, 准教授 (90512161)
Project Period (FY) 2017-06-30 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥6,240,000 (Direct Cost: ¥4,800,000、Indirect Cost: ¥1,440,000)
Fiscal Year 2019: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2018: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2017: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Keywordsバイドメインモデル / 非線形問題 / 進行波 / 安定性 / 定性的理論 / 擬微分方程式 / 数値シミュレーション / フランク図形 / FitzHugh-Nagumoモデル / 分岐理論 / パルス波 / 分岐現象
Outline of Final Research Achievements

Bidomain models are very important mathematical models in cardiac electrophysiology. However, it is very difficult to analyze bidomain models mathematically, therefore not much was known about the qualitative properties of solutions such as stability. In the present research, we studied the bidomain Allen-Cahn equation and established a general theory on the nonlinear stability of planar waves, and solved the open problem concerning whether or not the maximum principle holds for the bidomain operator. We also studied the sawtooth zigzag patterns that typically appear when a planar front destabilizes and, by a combination of theoretical and numerical methods, we shed light on the mechanism that produces those sawtooth patterns. Furthermore, by using numerical simulations, we studiend the behavior of pulse waves in the bidomain FitzHugh-Nagumo equation and showed that there are different types of behaviors when the flat pulse waves become unstable.

Academic Significance and Societal Importance of the Research Achievements

バイドメインモデルは心臓電気生理学で極めて重要であるが,その定性的性質は長らく未解明であった.これに突破口を開いたのが,我々が2016年に発表したバイドメインAllen-Cahn方程式の平面波の線形安定性に関する論文である.今回の研究は,これをさらに発展させて,理論的解析と数値シミュレーションを併用して未知の部分の多いバイドメインモデルの特性にさまざまな角度から光をあてたものである.バイドメインモデルの定性的性質の研究は,最近始まったばかりであり,いまだ解決すべき問題は数多く残っているが,我々が得た知見が,将来的には不整脈等の理解など,医学生理学分野の研究に資する可能性があると考える.

Report

(7 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (19 results)

All 2023 2022 2021 2020 2018 2017 Other

All Int'l Joint Research (6 results) Journal Article (2 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 2 results) Presentation (6 results) (of which Int'l Joint Research: 3 results,  Invited: 6 results) Remarks (1 results) Funded Workshop (4 results)

  • [Int'l Joint Research] ペンシルベニア大学(米国)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] ペンシルベニア大学(米国)

    • Related Report
      2021 Research-status Report
  • [Int'l Joint Research] ペンシルベニア大学(米国)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] ペンシルベニア大学(米国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] University of Minnesota(米国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] University of Minnesota(米国)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Stability of front solutions of the bidomain Allen-Cahn equation on an infinite strip2023

    • Author(s)
      Matano Hiroshi、Mori Yoichiro、Nara Mitsunori
    • Journal Title

      SIAM Journal on Mathematical Analysis

      Volume: -

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Asymptotic Behavior of Fronts and Pulses of the Bidomain Model2022

    • Author(s)
      Matano Hiroshi、Mori Yoichiro、Nara Mitsunori、Sakakibara Koya
    • Journal Title

      SIAM Journal on Applied Dynamical Systems

      Volume: 21 Issue: 1 Pages: 616-649

    • DOI

      10.1137/21m1416904

    • Related Report
      2022 Annual Research Report 2021 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Stability of fronts in bidomain models2022

    • Author(s)
      Hiroshi Matano
    • Organizer
      International Conference on Nonlinear Partial Differential Equations
    • Related Report
      2022 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Stability of fronts in bidomain models2022

    • Author(s)
      Hiroshi Matano
    • Organizer
      Seminar at University of New England
    • Related Report
      2022 Annual Research Report
    • Invited
  • [Presentation] Stability of fronts in bidomain models2021

    • Author(s)
      Hiroshi Matano
    • Organizer
      Nonlinear Elliptic and Parabolic Equations with Applications --- Dedicated to Professor Yihong Du on the Occasion of His 60th Birthday
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Stability of fronts in a bidomain model2018

    • Author(s)
      Hiroshi Matano
    • Organizer
      ソルボンヌ大学Jacques-Louis Lionsセミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Stability of fronts in bidomain models2017

    • Author(s)
      Hiroshi Matano
    • Organizer
      International Conference on Mathematical Modeling and Applications (ICMMA 2017)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] バイドメインAllen-Cahn方程式の平面波の安定性について2017

    • Author(s)
      Hiroshi Matano
    • Organizer
      早稲田大学「応用解析研究会」定例セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Remarks] 明治大学教員データベース

    • URL

      https://gyoseki1.mind.meiji.ac.jp/mjuhp/KgApp?resId=S002040

    • Related Report
      2021 Research-status Report 2020 Research-status Report
  • [Funded Workshop] Winter School of Applied Analysis 20202020

    • Related Report
      2019 Research-status Report
  • [Funded Workshop] Applied Analysis New Year Workshop 20202020

    • Related Report
      2019 Research-status Report
  • [Funded Workshop] MIMS/CMMA Mini Workshop2018

    • Related Report
      2018 Research-status Report
  • [Funded Workshop] MIMS/CMMA Mini Workship: Mathematical Analysis of Spatial and Evolutionary Epidemiology(明治大学)2018

    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-07-21   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi