• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Structure-preserving methods for stochastic differential equations

Research Project

Project/Area Number 17K18736
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Research Field Analysis, Applied mathematics, and related fields
Research InstitutionOsaka University

Principal Investigator

Furihata Daisuke  大阪大学, サイバーメディアセンター, 教授 (80242014)

Project Period (FY) 2017-06-30 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥6,110,000 (Direct Cost: ¥4,700,000、Indirect Cost: ¥1,410,000)
Fiscal Year 2019: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2018: ¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords確率微分方程式 / 構造保存数値解法 / 離散微分幾何 / 非線形差分 / 差分法 / 伊藤積分
Outline of Final Research Achievements

Focusing on the particular structure of the linear stochastic differential equation, which appears when based on the Ito integral, not the Stratonovich integral, we have developed a new method to conserve the quadratic structure by introducing the discrete square operator corresponding to the development operator of the stochastic differential equation. Via this method, we can construct new structure-preserving numerical methods.
Furthermore, by proposing a discretization of differential geometry appropriate for the structure-preserving methods, it is possible to make the target region space multidimensional. We also proposed new nonlinear difference operators as the discretization of differential operators, and we show that we can obtain numerically stable solutions without the calculation of the travelling-wave direction for wave-type equations.

Academic Significance and Societal Importance of the Research Achievements

確率微分方程式は数学理論上の問題のみならず,気象分野,金融問題や伝染病感染予測等で現れる社会的にも重要な数学的ツールである.その基本たる伊藤積分と時間対称型のStratonovich積分との間に本質的な違いは無いものと認識されているが伊藤積分にのみ表出する数学構造がある.この事実を利用し,発展作用素に対応する離散的な平方作用素を導入して二次形式構造を保存する方法論を考案,構造保存数値解法を構成することで確率微分方程式の近似数値解計算の向上に本質的に寄与する成果を得た.

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (18 results)

All 2021 2020 2019 2018 2017

All Journal Article (5 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 5 results,  Acknowledgement Compliant: 1 results) Presentation (13 results) (of which Int'l Joint Research: 8 results,  Invited: 1 results)

  • [Journal Article] A structure-preserving scheme for the Allen?Cahn equation with a dynamic boundary condition2020

    • Author(s)
      Okumura Makoto、Daisuke Furihata
    • Journal Title

      Discrete & Continuous Dynamical Systems - A

      Volume: 40 Issue: 8 Pages: 4927-4960

    • DOI

      10.3934/dcds.2020206

    • Related Report
      2020 Annual Research Report 2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] The Hyers?Ulam stability constant for Chebyshevian Bernstein operators2018

    • Author(s)
      Ait-Haddou Rachid、Furihata Daisuke、Mazure Marie-Laurence
    • Journal Title

      Journal of Mathematical Analysis and Applications

      Volume: 463 Issue: 2 Pages: 1075-1091

    • DOI

      10.1016/j.jmaa.2018.03.067

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Strong Convergence of a Fully Discrete Finite Element Approximation of the Stochastic Cahn--Hilliard Equation2018

    • Author(s)
      Daisuke Furihata, Mihaely Kovaecs, Stig Larsson and Fredrik Lindgren
    • Journal Title

      SIAM Journal on Numerical Analysis

      Volume: 56 Issue: 2 Pages: 708-731

    • DOI

      10.1137/17m1121627

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Some Discrete Inequalities for Central-Difference Type Operators2017

    • Author(s)
      Hiroki Kojima, Takayasu Matsuo and Daisuke Furihata
    • Journal Title

      Mathematics of Computation

      Volume: 86 Issue: 306 Pages: 1719-1739

    • DOI

      10.1090/mcom/3154

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Geometric numerical integrators for Hunter-Saxton-like equations2017

    • Author(s)
      Miyatake Yuto、Cohen David、Furihata Daisuke、Matsuo Takayasu
    • Journal Title

      Japan Journal of Industrial and Applied Mathematics

      Volume: 34 Issue: 2 Pages: 441-472

    • DOI

      10.1007/s13160-017-0252-1

    • NAID

      210000160223

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] 非線形性をもたせた差分による微分近似2021

    • Author(s)
      降籏 大介
    • Organizer
      第26回計算工学講演会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 凸多角形格子上の積分定理とその証明2020

    • Author(s)
      降籏 大介
    • Organizer
      日本応用数理学会年会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Discrete integration by parts on any convex polygon meshes and its applications to structure-preserving methods for PDEs2020

    • Author(s)
      Daisuke Furihata
    • Organizer
      ANZIAM2020
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Discrete Gauss, Green and Stokes laws with difference operators on Voronoi meshes and applications2019

    • Author(s)
      Daisuke Furihata
    • Organizer
      SIAM: East Asian Section Conference 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Discrete Green-Gauss formulae based on finite volume operators using Voronoi mesh and structure-preserving methods2019

    • Author(s)
      Daisuke Furihata
    • Organizer
      ICIAM2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Structure-preserving method using discrete Gauss, Green and Stokes laws on Voronoi meshes2019

    • Author(s)
      Daisuke Furihata
    • Organizer
      SciCADE2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Structure-preserving methods based on discrete Gauss, Green and Stokes laws on Voronoi meshes2019

    • Author(s)
      Daisuke Furihata
    • Organizer
      Autralian and New Zealand Industrial and Applied Mathematics 2019
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Structure-preserving methods for PDEs via Green--Gauss formulae on Voronoi cells2018

    • Author(s)
      Daisuke Furihata
    • Organizer
      13th SIAM East Asian Section Conference 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] A method to design structure-preserving schemes for PDEs on Voronoi cells2018

    • Author(s)
      Daisuke Furihata
    • Organizer
      Czech-Japan seminar in applied mathematics
    • Related Report
      2018 Research-status Report
  • [Presentation] Discrete Gauss, Green and Stokes laws on Voronoi meshes and structure-preserving methods2018

    • Author(s)
      Daisuke Furihata
    • Organizer
      Taiwan-Japan joint workshop on numerical analysis and scientific computation
    • Related Report
      2018 Research-status Report
  • [Presentation] Structure-preserving method on Voronoi cells2017

    • Author(s)
      Daisuke Furihata
    • Organizer
      Connections in Geometric Numerical Integration and Structure-preserving Discretization
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Discrete Variational Derivative Method based on Green--Gauss formulae for Voronoi Cell2017

    • Author(s)
      Daisuke Furihata
    • Organizer
      International Conference on Scientific Computation and Differential Equations (SciCADE)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] ボロノイ格子上における Green--Gauss 則を用いた離散変分導関数法2017

    • Author(s)
      降籏 大介
    • Organizer
      日本応用数理学会 2017年年会
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-07-21   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi