• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

An exploratory study toward a foundation of nonequilibrium statistical mechanics based on the fluctuation theorem

Research Project

Project/Area Number 17K18737
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Research Field Analysis, Applied mathematics, and related fields
Research InstitutionOsaka University

Principal Investigator

Morita Takehiko  大阪大学, 理学研究科, 教授 (00192782)

Project Period (FY) 2017-06-30 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥5,590,000 (Direct Cost: ¥4,300,000、Indirect Cost: ¥1,290,000)
Fiscal Year 2019: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2018: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2017: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywordsゆらぎの定理 / 非平衡定常状態 / 熱力学形式 / エルゴード理論 / 大偏差原理 / エルドード理論
Outline of Final Research Achievements

The aim of the project was to get a clue to establish non-equilibrium thermodynamic formalism based on the so-called 'Fluctuation Theorem' by careful investigations into statistical properties of chaotic dynamical systems. Now it turns out that I need to spend more time to study various kinds of limit theorems for dynamical systems. Therefore, I have to say that we are still in our way and we have just arrived at the threshold of the main part of the problem. But fortunately, the attempt enables us to obtain a new method for showing some limit theorems for dynamical systems via thermodynamic formalism and analytic perturbation of transfer operators and an idea to formulate sample-wise limit problems for random dynamical systems by introducing the notion of their direct products.

Academic Significance and Societal Importance of the Research Achievements

力学系の極限定理に対する転送作用素の解析的摂動による接近法は強力な方法ではあるが、扱う対象となる極限定理の多様性という点では不十分という感があった。本研究ではこれまであまり取り扱われなかった形態の極限定理についても踏み込んだことは意義がある。ランダム力学系の標本毎極限問題において直積力学系を定式化することによって、必ずしもノイズが独立でない場合にも適用可能な枠組みを構築したことの意義は大きい。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (6 results)

All 2019 2018 2017

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (5 results) (of which Int'l Joint Research: 1 results,  Invited: 3 results)

  • [Journal Article] An alternative proof of the uniqueness of martingale-coboundary decomposition of strictly stationary processes2019

    • Author(s)
      T. Morita
    • Journal Title

      Commentationes Mathematicae Universitatis Carolina

      Volume: 印刷中

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Sample-wise central limit theorem with deterministic centering for nonsingular random dynamical systems2019

    • Author(s)
      T. Morita
    • Organizer
      Research on the theory of random dynamical systems and fractal geometry
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Direct product of random dynamical systems2019

    • Author(s)
      盛田 健彦
    • Organizer
      エルゴード理論とその周辺
    • Related Report
      2019 Annual Research Report
  • [Presentation] Sample-wise central limit theorem with deterministic centering for non-singular random dynamical system2018

    • Author(s)
      盛田 健彦
    • Organizer
      エルゴード理論とその周辺
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Some limit theorems for piecewise expanding dynamical systems via perturbed transfer operators2018

    • Author(s)
      盛田健彦
    • Organizer
      岡山・広島 解析・確率論セミナー2018
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Expedient Banach algebras for piecewise expanding fibred systems2017

    • Author(s)
      盛田健彦
    • Organizer
      エルゴード理論とその周辺
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-07-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi