Project/Area Number |
17K18750
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Research Field |
Condensed matter physics and related fields
|
Research Institution | NTT Basic Research Laboratories |
Principal Investigator |
Hashisaka Masayuki 日本電信電話株式会社NTT物性科学基礎研究所, 量子電子物性研究部, 主任研究員 (80550649)
|
Project Period (FY) |
2017-06-30 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2019: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2018: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2017: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
|
Keywords | スピンエレクトロニクス / 反強磁性体 / 磁気共鳴 / テラヘルツ / スピントロニクス |
Outline of Final Research Achievements |
While conventional spintronics has been studied mainly on ferromagnets, for realizing high-speed spintronics for future information processing, antiferromagnetic resonance with THz resonance frequency has been attracting much attention. In this study, we aimed at proposing a new method for evaluating antiferromagnetic resonance in the THz frequency band. The central idea of this research is to irradiate the sample with the near-field light of a CW THz signal propagating along a waveguide. We fabricated two photoconductive switches on a low-temperature-grown GaAs substrate, which operate as a CW THz source and a detector. The THz signal propagates along a waveguide and irradiates the sample, enabling us to evaluate the resonance absorption of the sample. We found that this technique is promising for measuring THz magnetic resonance in antiferromagnetic materials.
|
Academic Significance and Societal Importance of the Research Achievements |
反強磁性体はTHz帯に共鳴周波数を持つことから、超高速情報処理技術への応用が期待できる。本課題は、半導体光伝導スイッチを用いたオンチップテラヘルツ磁場照射方法を、反強磁性磁気共鳴の検出に利用する新しいアイデアを提案するもので、スピントロニクス研究の新たな展開を拓く基礎技術となる可能性がある。得られた研究成果は、本手法が従来よりも高い周波数分解能での共鳴吸収の観測を可能にすることを示しており、実際に有用な測定系が作製できたことを示している。これらの結果は、新しいTHz技術の確立、およびスピントロニクスの高速化の可能性の提示という2つの意味で、学術的・社会的意義のある成果であると考えられる。
|