• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Application of deep learning to the quantum phase transition in random electron systems

Research Project

Project/Area Number 17K18763
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Research Field Condensed matter physics and related fields
Research InstitutionSophia University

Principal Investigator

Ohtsuki Tomi  上智大学, 理工学部, 教授 (50201976)

Project Period (FY) 2017-06-30 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥260,000 (Direct Cost: ¥200,000、Indirect Cost: ¥60,000)
Fiscal Year 2017: ¥5,200,000 (Direct Cost: ¥4,000,000、Indirect Cost: ¥1,200,000)
Keywords深層学習 / 機械学習 / 量子相転移 / トポロジカル系 / アンダーソン転移 / 量子パーコレーション / 畳み込みニューラルネットワーク / 相図 / ランダム系 / パーコレーション / アモルファス / recursive neural network / トポロジカル絶縁体 / ワイル半金属 / 量子カオス / トポロジカル物質 / ランダム電子系 / ニューラルネット
Outline of Final Research Achievements

Applications of neural networks to condensed matter physics are becoming popular and beginning to be well accepted. One of the applications is analyzing the wave functions and determining their quantum phases. We have used the multilayer convolutional neural network, so-called deep learning, to determine the quantum phases in random electron systems. After training the neural network by the supervised learning of wave functions in restricted parameter regions in known phases, the neural networks can determine the phases of the wave functions in wide parameter regions in unknown phases; hence, the phase diagrams are obtained. We demonstrate the validity and generality of this method by drawing the phase diagrams of two- and higher dimensional Anderson metal-insulator transitions and quantum percolations as well as disordered topological systems. Both real-space and Fourier space wave functions are analyzed. The advantages and disadvantages over conventional methods are discussed.

Academic Significance and Societal Importance of the Research Achievements

機械学習,広くは人工知能の手法が,金属や半導体,絶縁体の性質を調べる固体物理においても有効性であることを示した。動物や人の画像認識として一般に親しまれている深層学習が,固体物理学に応用できることを示し,この手法の有効性を明らかにできた。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (25 results)

All 2020 2019 2018 2017 Other

All Int'l Joint Research (1 results) Journal Article (7 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 7 results,  Open Access: 3 results) Presentation (13 results) (of which Int'l Joint Research: 9 results,  Invited: 7 results) Book (2 results) Remarks (2 results)

  • [Int'l Joint Research] 北京大学/物理学科(中国)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Drawing Phase Diagrams of Random Quantum Systems by Deep Learning the Wave Functions2020

    • Author(s)
      Ohtsuki Tomi、Mano Tomohiro
    • Journal Title

      Journal of the Physical Society of Japan

      Volume: 89 Issue: 2 Pages: 022001-022001

    • DOI

      10.7566/jpsj.89.022001

    • NAID

      40022154962

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Application of Convolutional Neural Network to Quantum Percolation in Topological Insulators2019

    • Author(s)
      Mano Tomohiro、Ohtsuki Tomi
    • Journal Title

      Journal of the Physical Society of Japan

      Volume: 88 Issue: 12 Pages: 123704-123704

    • DOI

      10.7566/jpsj.88.123704

    • NAID

      40022096550

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 多層畳み込みニューラルネットワークによるランダム電子系の相図2018

    • Author(s)
      大槻東巳,真野智裕
    • Journal Title

      固体物理

      Volume: 53 Pages: 447-454

    • NAID

      40021660301

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] 機械学習・深層学習と物性物理2018

    • Author(s)
      大槻東巳
    • Journal Title

      パリティ

      Volume: 33 Pages: 6-10

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Unconventional scaling theory in disorder-driven quantum phase transition2018

    • Author(s)
      X. Luo, T. Ohtsuki, R. Shindou
    • Journal Title

      Phys. Rev. B

      Volume: 98 Issue: 2

    • DOI

      10.1103/physrevb.98.020201

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] hase Diagrams of Three-Dimensional Anderson and Quantum Percolation Models Using Deep Three-Dimensional Convolutional Neural Network2017

    • Author(s)
      Tomohiro Mano, and Tomi Ohtsuki
    • Journal Title

      Journal of the Physical Society of Japan

      Volume: 86 Issue: 11 Pages: 113704-113704

    • DOI

      10.7566/jpsj.86.113704

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] 深層学習を利用したトポロジカル物質の研究2017

    • Author(s)
      大槻東巳
    • Journal Title

      パリティ

      Volume: 32 Pages: 52-56

    • NAID

      40021226052

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] Determining Quantum Phases of Disordered Systems by Deep Learning2019

    • Author(s)
      Tomi Ohtsuki
    • Organizer
      RANDOM GEOMETRIES AND MULTIFRACTALITY IN CONDENSED MATTER AND STATISTICAL MECHANICS
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Phase Diagrams and Scaling Behaviors of Disordered Weyl Semimetals2019

    • Author(s)
      Tomi Ohtsuki
    • Organizer
      International conference on Frontiers of correlated electron sciences
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Detecting topological phases in random electron systems via convolutional neural network2019

    • Author(s)
      Tomi Ohtsuki
    • Organizer
      NTTI 2019 and BEC 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Application of Convolutional Neural Network (CNN) to Quantum Percolation in Topological Insulators2019

    • Author(s)
      Tomi Ohtsuki
    • Organizer
      Mini-Workshop On “Localization, Many-body Physics, and Machine Learning (ML) Applications to Physics Research”
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Detecting topological and non-topological quantum phase transitions using neural network2018

    • Author(s)
      Tomi Ohtsuki
    • Organizer
      Edge Reconstruction: Transport and Quantum Phase Transitions
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Applications of deep 3D convolutional neural network to Anderson and quantum percolation models2018

    • Author(s)
      Tomi Ohtsuki
    • Organizer
      Anderson Localization and Interactions
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Detection of Quantum Phase Transitions in Disordered Systems Using Convolutional Neural Network2018

    • Author(s)
      Tomi Ohtsuki
    • Organizer
      日本物理学会シンポジウム
    • Related Report
      2018 Research-status Report
  • [Presentation] Applications of multilayer convolutional neural network to quantum phase transitions in disordered topological and non-topological systems2018

    • Author(s)
      T. Ohtsuki
    • Organizer
      Americal Physical Society March Meeting
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] 多層畳み込みニューラルネットワークで得た三次元ランダム電子系の相図2018

    • Author(s)
      真野智裕,大槻東巳
    • Organizer
      日本物理学会年次大会
    • Related Report
      2017 Research-status Report
  • [Presentation] 機械学習を使ったトポロジカル物質表面・エッジの研究2018

    • Author(s)
      大槻東巳
    • Organizer
      第31回日本放射光学会年会・放射光科学合同シンポジウム
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Deep learning the quantum phase transitions of disordered topological matters2017

    • Author(s)
      T. Ohtsuki
    • Organizer
      Nanophysics, from fundamental to application, Vietnam
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Deep Learning Topological Phases of Random Systems2017

    • Author(s)
      T. Ohtsuki
    • Organizer
      Osaka CTSR-Riken iTHES Joint Symposium: Deep learning and physics
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 深層学習で求めたスピンアイス模型における量子マグノンホール効果の相図2017

    • Author(s)
      大槻東巳
    • Organizer
      日本物理学会秋季大会
    • Related Report
      2017 Research-status Report
  • [Book] 物理学者,機械学習を使う2019

    • Author(s)
      橋本 幸士、大槻 東巳、真野 智裕、斎藤 弘樹、藤田 浩之、安藤 康伸、永井 佑紀、青木 健一、藤田 達大、小林 玉青、大関 真之、久良 尚任、福嶋 健二、村瀬 功一、船井 正太郎、柏 浩司、富谷 昭夫
    • Total Pages
      212
    • Publisher
      朝倉書店
    • ISBN
      4254131291
    • Related Report
      2019 Annual Research Report
  • [Book] advanced topological insulator2019

    • Author(s)
      Koji Kobayashi, Tomi Ohtsuki, Ken-Ichiro Imura
    • Total Pages
      49
    • Publisher
      Wiley online library
    • ISBN
      9781119407317
    • Related Report
      2018 Research-status Report
  • [Remarks]

    • Related Report
      2019 Annual Research Report
  • [Remarks]

    • Related Report
      2018 Research-status Report

URL: 

Published: 2017-07-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi