Construction of a structural optimization method of thermal fluid metamaterials using rarefied gas effects
Project/Area Number |
17K18823
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Research Field |
Mechanics of materials, Production engineering, Design engineering, and related fields
|
Research Institution | Kyoto University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
山田 崇恭 京都大学, 工学研究科, 助教 (30598222)
高田 滋 京都大学, 工学研究科, 教授 (60271011)
泉井 一浩 京都大学, 工学研究科, 准教授 (90314228)
|
Project Period (FY) |
2017-06-30 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2017: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
|
Keywords | 構造最適化 / トポロジー最適化 / 熱流体 / メタマテリアル / 希薄流体効果 / ボルツマン方程式 / 希薄気体効果 |
Outline of Final Research Achievements |
It is known that the flow field is induced by the temperature field in the microscale fluid field where the mean free path scale of the gas molecules is not negligible. This phenomenon called as rarefied gas flow is recently observed under the atmospheric pressure, and has gathered attention. In this research, we constructed a shape creation method of thermal-fluid metamaterials which has a peculiar characteristic of flow induction and negative thermal diffusion due the reverse phenomenon where the temperature difference appears due to the fluid flow, based on the topology optimization method. Furthermore, the proposed method was applied to the simple thermal-fluid metamaterial designs, and was confirmed that the proposed method can provide the structural designs that show the desired performance.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究により希薄気体流れ場においてその性能を発揮する熱流体メタマテリアルの創成設計法を構築でき,またその方法により熱流体メタマテリアル構造創成設計できることを確認できた.本方法は,世界的に見ても類似な報告はなく学術的に見て高い新規性があり,極めて独創的であると考える.さらに,これらのメタマテリアルにより,微小デバイスにおいて流れを生じたさせり,特定の流れを利用した加熱冷却が可能となり,超高性能あるいは新しい機能を持つ革新的な熱流体デバイスの実現が可能となる.これらのデバイスは様々な産業に展開でき,その社会的意義も高い.
|
Report
(4 results)
Research Products
(10 results)