Project/Area Number |
17K19029
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Research Field |
Nano/Micro science and related fields
|
Research Institution | Toyohashi University of Technology |
Principal Investigator |
Goto Taichi 豊橋技術科学大学, 工学(系)研究科(研究院), 助教 (00721507)
|
Project Period (FY) |
2017-06-30 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2018: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2017: ¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
|
Keywords | スピン波 / 磁壁 / 磁気ドメイン / 強磁性共鳴 / 磁性絶縁体 / 低消費電力 / 革新デバイス / 磁気光学顕微鏡 / 光スイッチ / ガーネット / レーザー / 磁気光学 / マイクロマグネティックス |
Outline of Final Research Achievements |
It is the final purpose to clarify whether the domain wall moves to the right or left by flowing 'spin wave' which is a magnetic wave in the domain wall. From the engineering viewpoint, if the magnetic domain wall in the insulator can be controlled as desired by the spin wave, the magnetic information can be shifted by the magnetism, and unlike the electricity, the dense wiring is unnecessary, and it can be applied to various things. However, there is no demonstration, and the movement of magnetic domain wall has not been confirmed, and there is no experimental basis. The movement of the domain wall is much slower than that of the general spin wave, and it is considered to be difficult in the system widely tested until now. Then, the relationship between spin wave flowing in the magnetic insulator without electric current and domain wall was clarified using sample and observation of nano micro scale.
|
Academic Significance and Societal Importance of the Research Achievements |
私は絶縁磁性体中の磁壁の消失と発生を制御し,光の偏光面状態を高速で切り替えることで,世界で初となる磁壁を使ったQスイッチレーザーを2016年に実証・発表されている。当該レーザー開発の中で,レーザーの出力される周波数(繰り返し周波数)は,100kHzを超えられず,情報処理デバイス応用には障壁がある。本件は,これまで具体の対策がなかった。そこで,着目したのが,電流による磁壁制御である。磁壁のある導体磁性体に電流を流すと,磁壁は移動する。これを絶縁磁性体に適用できれば,アレイ化技術と組み合わせて,レーザーの繰り返し周波数をMHzオーダに増大でき,社会での小型のレーザーの活躍範囲が広がると考えられる。
|