Project/Area Number |
17K19045
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Research Field |
Nano/Micro science and related fields
|
Research Institution | National Institute for Materials Science |
Principal Investigator |
ISHII Satoshi 国立研究開発法人物質・材料研究機構, 国際ナノアーキテクトニクス研究拠点, 主任研究員 (80704725)
|
Project Period (FY) |
2017-06-30 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2018: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2017: ¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
|
Keywords | 熱放射 / ナノ構造 / 表面プラズモン / 微細構造 / 透明導電性酸化物 / 中赤外光 / 集光 / 赤外線 / 波長選択光吸収 / 熱輻射 / 微細加工 |
Outline of Final Research Achievements |
We experimentally demonstrated wavelength-selective thermal emission using ITO nanostructure, where ITO is one of the transparent conductive oxide. We also demonstrated wavelength-selective thermal emission with titanium nitride as well. Both are not metal, however, behave as metal in the mid infrared. While the former structure had 2D period patterns, the latter structure was multilayers which were designed to excite Tamm plasmon modes. Also, an attempt was made to demonstrate the focusing of thermal emission, however, clear focusing was not observed in our experiment. Combining narrow thermal emission structure and focusing structure may lead to better focusing.
|
Academic Significance and Societal Importance of the Research Achievements |
これまで狭帯域熱放射は金属ナノ構造によって実証されてきたものが多く、他の材料系はほとんど使われてこなかった。今回、透明導電性酸化物や遷移金属窒化物でも狭帯域熱放射ナノ構造に使えることを示せた。透明導電性酸化物は文字通り可視では透明で、遷移金属窒化物は融点の高いセラミックスである。本成果により、透明な狭帯域熱放射構造や耐熱温度の高い安価な狭帯域熱放射構造を実現できる可能性を示せた。 熱放射の集光は、今回の成果ではまだ十分とは言えないが、構造の最適化により集光特性が向上する可能性があり、そうなれば熱放射光源としての応用が広がる。
|