Frontier of crack initiation dynamics opened up by particle method and microscopic strength analysis technology
Project/Area Number |
17K19083
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Research Field |
Nuclear engineering, Earth resources engineering, Energy engineering, and related fields
|
Research Institution | Tohoku University |
Principal Investigator |
Nogami Shuhei 東北大学, 工学研究科, 准教授 (00431528)
|
Co-Investigator(Kenkyū-buntansha) |
芹澤 久 大阪大学, 接合科学研究所, 准教授 (20294134)
安堂 正己 国立研究開発法人量子科学技術研究開発機構, 六ヶ所核融合研究所 核融合炉材料研究開発部, 主幹研究員(定常) (30370349)
|
Project Period (FY) |
2017-06-30 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2019: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2017: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
|
Keywords | 粒子法 / 微視強度解析 / き裂発生 / シミュレーション / 疲労 |
Outline of Final Research Achievements |
The purpose of this research is to predict crack initiation and to model it by combining microscopic strength analysis technology and particle method. As for the crack initiation behavior evaluation by microscopic strength analysis technology, it was established as a technology capable of evaluating mechanical properties such as crack initiation by using micrometer-size test specimens. As for the crack initiation simulation by the particle method, the input parameters were adjusted to enable the simulation of crack initiation. In each case, the methodology and the basic technology were established. However, it was not possible to establish within this research period as a method for evaluating a real phenomenon that actually fits. In each case, the basic technology has been established, therefore we plan to continue research to achieve the original research goals.
|
Academic Significance and Societal Importance of the Research Achievements |
実用部材などの複雑系において、空間的(場所)にも、時間的(時間、繰返し数)にも、き裂発生そのものを的確に予測できない原因は、き裂発生の瞬間を定量的に説明しうる学術が構築されていないことにある。本研究では、微視強度計測技術による実験的アプローチと、き裂発生シミュレーションに適した粒子法を融合させることにより、機器材料のき裂発生の予測とそのモデル化を目的とした。本研究を端緒とし、長期的には、き裂発生を要因とした技術的課題を学術的な視点から抜本的に解決する学術体系「き裂発生ダイナミクス」の確立に挑戦する。これにより、様々な分野におけるき裂発生を要因としたあらゆる課題の解決に貢献する。
|
Report
(4 results)
Research Products
(2 results)