Design of Shape Memory Gels Using Molecular Complexes as Reversible Crosslinks and Their Molecularly Stimuli-Responsive Shape Memory Properties
Project/Area Number |
17K19163
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Research Field |
Polymer, Organic materials, and related fields
|
Research Institution | Kansai University |
Principal Investigator |
Miyata Takashi 関西大学, 化学生命工学部, 教授 (50239414)
|
Project Period (FY) |
2017-06-30 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2018: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2017: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
|
Keywords | ゲル / 刺激応答性ゲル / 形状記憶 / 分子複合体 / 可逆架橋 / シクロデキストリン / グルコース応答性 / 分子集合体 |
Outline of Final Research Achievements |
We designed molecule-responsive shape memory gels that underwent a change from a temporary shape to their original shape in response to a target molecule such as bisphenol A (BPA) and glucose. Gels with cyclodextrin (CD) maintained a temporary shape in the presence of a taget BPA by forming a CD-BPA-CD complex. However, the gels returned from the temporary shape to their original shape by the removal of BPA.In addition, the glucose-responsive shape-memory gels were prepared by copolymerizing a monomer with a phenylboronic acid moiety(PBA), and a crosslinker in the presence of poly(2-glucosyloxyethyl methacrylate) (PGEMA) and glucose. When the resultant gels were deformed in a buffer solution without glucose, they maintained a temporary shape due to formation of the PGEMA-PBA complexes acted as crosslinks. However, the gels maintaining the temporary shape returned to their original shape in a buffer solution with glucose because the PGEMA-PBA complexes were dissociated.
|
Academic Significance and Societal Importance of the Research Achievements |
通常の温度応答性の形状記憶ゲルとは異なり,分子応答性形状記憶ゲルは一時的な形状を維持するための可逆架橋として分子複合体を利用しているため,その高い分子認識能によって形状記憶特性の誤作動を回避できる。そのため,分子応答性形状記憶ゲルは単純なアクチュエータとしての応用だけではなく,診断センサーやマイクロデバイス等への応用も期待でき,従来の形状記憶高分子よりもその応用範囲は広い。さらに,本研究で得られた成果は,これまでの材料開発では全く取り扱われてこなかった可逆架橋として分子複合体を利用した安定化構造の設計による「記憶」システムの提案であり,新たなスマート材料システムへの展開も期待できる。
|
Report
(3 results)
Research Products
(31 results)