Engineering of a redox enzyme processively decomposing crystalline polysaccharide
Project/Area Number |
17K19213
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Research Field |
Biomolecular chemistry and related fields
|
Research Institution | Institute for Molecular Science (2018) Okazaki Research Facilities, National Institutes of Natural Sciences (2017) |
Principal Investigator |
IINO RYOTA 分子科学研究所, 生命・錯体分子科学研究領域, 教授 (70403003)
|
Project Period (FY) |
2017-06-30 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2018: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2017: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
|
Keywords | 分子モーター / キチナーゼ / 結晶性キチン / バイオマス / 1分子イメージング / タンパク質工学 / 1分子計測 |
Outline of Final Research Achievements |
The following 2 subjects were set to be a goal in this study. A) Quantitative measurement of the elementary steps of LPMO, a redox enzyme that degrades crystalline polysaccharides, by single-molecule fluorescence imaging, and elucidation of its operation mechanism. B) Engineering of non-natural oligomeric LPMO by fusing with artificial coiled-coil proteins, that surpasses the wild-type enzyme. Regarding the subject A, following results were obtained for the first time. 1. The presence of the co-substrate hydrogen peroxide facilitates the binding of LPMO to crystalline chitin. 2. Activated LPMO binds to crystalline chitin for several seconds for degradation. 3. The chitin degradation reaction by LPMO is not processive, and LPMO dissociates after single catalysis. The subject B is still in progress, because non-natural molecules that show higher degradation activity than the wild-type have not been obtained yet.
|
Academic Significance and Societal Importance of the Research Achievements |
セルロースやキチンといった結晶性多糖は、地球上に大量に存在し燃料に変換可能なバイオマスである。しかしながら、その物理的・化学的安定性からオリゴ糖への分解が容易でなく有効利用されていない。このため、常温常圧の穏やかな条件で結晶性多糖を分解する糖質分解酵素が基礎・応用の両面で研究されている。LPMOは、これらの中で最も高いオリゴ糖生成活性を示す酵素として注目を集めている。本研究で明らかとなったLPMOの作動機構に基づき、野生型よりも高い分解活性を持つ非天然酵素が創成されることが期待され、将来は結晶性多糖バイオマスの有効利用の促進につながると期待される。
|
Report
(3 results)
Research Products
(8 results)