Electron crystallographic analysis of tomographic volumes of 2D crystals of membrane proteins
Project/Area Number |
17K19347
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Research Field |
Molecular and Genome biology and related fields
|
Research Institution | Mie University (2019) Nagoya University (2017-2018) |
Principal Investigator |
Tani Kazutoshi 三重大学, 医学系研究科, 特任教授(研究担当) (20541204)
|
Project Period (FY) |
2017-06-30 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥6,240,000 (Direct Cost: ¥4,800,000、Indirect Cost: ¥1,440,000)
Fiscal Year 2019: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2018: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2017: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | クライオ電子顕微鏡 / 電子線結晶学 / クライオトモグラフィー / 二次元結晶 / F型ATPase / 負染色 / 膜タンパク質 / 電子線トモグラフィー |
Outline of Final Research Achievements |
Observing the three-dimensional structure of a membrane protein embeded into lipids, close to natural environment, is highly likely to provide important knowledge for clarifying its physiological function. For such structural analysis, electron crystallograpy using a two-dimensional (2D) crystal of membrane protein is definitely suitable. Under some conditions, membrane proteins are arranged in a 2D sheet after reconstitution into a lipid bilayer. However even if the 2D crystal production is successful, the possiblity of obtaining a crytal giving good diffraction is quite low. Most of them cannot be applied to electron crystallography. In this study, we established and evaluated a method that enables structural analysis of 2D crystals with poor crystallinity that were not tackled by conventional analysis methods.
|
Academic Significance and Societal Importance of the Research Achievements |
構造解析不可能であった結晶性の悪い二次元結晶からでも立体構造が得られるようになった意義は大きい。本手法は、三次元結晶由来の三次元再構成から平面領域を切り出すことができれば、仮想的な二次元結晶として構造解析が可能になる。このように適用範囲は、理論的には二次元結晶から三次元結晶までカバーすることができる点は有用であるが、分解能に関しては、原理上、結晶内の対象物の並び方に依存するため大幅な向上は期待できない。但し、分解能が低い場合でも、X線構造解析などで部分決定された原子モデルをフィッティングできれば、疑似的な原子モデルを作製し、変異体デザインを含めた機能発見といった目的などへ貢献できる。
|
Report
(4 results)
Research Products
(10 results)