• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Universal image processing framework based on machine-learning for bioimage-informatics

Research Project

Project/Area Number 17K19402
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Research Field Biology of Cells to Organisms, and related fields
Research InstitutionKyushu University

Principal Investigator

Uchida Seiichi  九州大学, システム情報科学研究院, 教授 (70315125)

Project Period (FY) 2017-06-30 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥6,240,000 (Direct Cost: ¥4,800,000、Indirect Cost: ¥1,440,000)
Fiscal Year 2018: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2017: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Keywordsバイオイメージインフォマティクス / 深層学習 / 画像変換 / バイオイメージ・インフォマティクス / 機械学習 / 画像情報学
Outline of Final Research Achievements

In this research, we tried to realize universal image processing framework based on machine-learning for bioimage-informatics. Bioimage-informatics is a interdisciplinary research area between image-informatics and biology. Its research topics include image filtering, denoising, segmentation, etc. Main difficulties of bioimage-informatics are 1) its complicated process pipeline and 2) lack of enough training samples. About 1), we need to combine several image processing units to achieve the expected results. To solve those difficulties, we have developed a new machine-learning method, called modular u-net. The idea of modular u-net is to concatenate u-nets, each of which performs a specific image processing, such as binarization, by a neural network-based mechanism. Since each u-net can be pre-trained sufficiently by general images, we can realize the expected image processing quality by a fine-tuning step after the concatenation with a limited number of training samples.

Academic Significance and Societal Importance of the Research Achievements

我々が開発したModular U-netは,様々な画像処理をニューラルネットワークであるu-netをモジュールとして実現するという新たな枠組みであり,生体画像以外にも様々な用途に利用しうる.各u-netは一般的な画像を使って十分に事前学習しておけるために,最終的な応用先における学習サンプルが希少であっても実用化のなところが強みである.実際,我々はすでに古文書画像処理の分野でmodular u-netの有効性を定量的に示している.

Report

(3 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • Research Products

    (22 results)

All 2019 2018 2017 Other

All Journal Article (4 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 4 results) Presentation (16 results) (of which Int'l Joint Research: 5 results,  Invited: 6 results) Remarks (2 results)

  • [Journal Article] Scribbles for Metric Learning2019

    • Author(s)
      Daisuke Harada, Ryoma Bise, Hiroki Tokunaga, Wataru Ohyama, Sanae Oka, Toshihiko Fujimori, Seiichi Uchida
    • Journal Title

      the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'19)

      Volume: -

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Biosignal Data Augmentation Based on Generative Adversarial Networks2018

    • Author(s)
      Shota Harada, Hideaki Hayashi, Seiichi Uchida
    • Journal Title

      Proceedings of 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society

      Volume: -

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Scene Text Eraser2017

    • Author(s)
      Toshiki Nakamura, Anna Zhu, Keiji Yanai and Seiichi Uchida
    • Journal Title

      Proceedings of The 14th International Conference on Document Analysis and Recognition

      Volume: - Pages: 832-837

    • DOI

      10.1109/icdar.2017.141

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Component Awareness in Convolutional Neural Networks2017

    • Author(s)
      Brian Kenji Iwana, Letao Zhou, Kumiko Tanaka-Ishii and Seiichi Uchida
    • Journal Title

      Proceedings of The 14th International Conference on Document Analysis and Recognition

      Volume: - Pages: 394-399

    • DOI

      10.1109/icdar.2017.72

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] バイオイメージインフォマティクスと機械学習2019

    • Author(s)
      内田誠一
    • Organizer
      第18回日本再生医療学会
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 文字を含む情景画像の異種CNN融合による超解像2019

    • Author(s)
      中尾 亮, 内田誠一
    • Organizer
      電子情報通信学会パターン認識・メディア理解研究会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Biomedical image analysis as an interesting machine learning task2018

    • Author(s)
      Seiichi Uchida
    • Organizer
      Shonan Meeting No.128 Workshop on Patient Similitude
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 情景内文字のCNNによる拡大2018

    • Author(s)
      中村俊貴, 内田誠一
    • Organizer
      電子情報通信学会パターン認識・メディア理解研究会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 手書き文字と活字の境界を探る2018

    • Author(s)
      森みづき, 中村俊貴, 早志英朗, 内田誠一
    • Organizer
      電子情報通信学会パターン認識・メディア理解研究会
    • Related Report
      2018 Annual Research Report
  • [Presentation] グラフカットとCNNを用いたマウス胚領域分割2018

    • Author(s)
      原田大輔, 備瀬竜馬, 岡 早苗, Timothy Francis Day, 藤森俊彦, 内田誠一
    • Organizer
      電子情報通信学会医用画像研究会
    • Related Report
      2018 Annual Research Report
  • [Presentation] バイオイメージインフォマティクス課題に見る機械学習応用事例2018

    • Author(s)
      内田誠一
    • Organizer
      第12回 基礎生物学研究所バイオイメージングフォーラム
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 画像情報学とデータサイエンス~技術動向と応用例2018

    • Author(s)
      内田誠一
    • Organizer
      平成30年 電気学会全国大会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] ディープニューラルネットワークと画像情報学2018

    • Author(s)
      内田誠一
    • Organizer
      日本生化学会北海道支部講演会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Biosignal Data Augmentation Based on Generative Adversarial Networks2018

    • Author(s)
      Shota Harada, Hideaki Hayashi, Seiichi Uchida
    • Organizer
      40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] 深層学習を用いた実験用マウスの挙動解析2018

    • Author(s)
      鎌田星菜, 佐藤太亮, 鈴木利治, 内田誠一
    • Organizer
      電子情報通信学会パターン認識・メディア理解研究会
    • Related Report
      2017 Research-status Report
  • [Presentation] マルチインスタンス学習による樹状突起スパイン検出2018

    • Author(s)
      藤吉輝明, 本館利佳, 鈴木利治, 内田誠一
    • Organizer
      電子情報通信学会パターン認識・メディア理解研究会
    • Related Report
      2017 Research-status Report
  • [Presentation] ML for DAR, DAR for ML --- How machine learning and document analysis and recognition benefit each other2017

    • Author(s)
      Seiichi Uchida
    • Organizer
      ICDAR Workshop on Machine Learning
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Component Awareness in Convolutional Neural Networks2017

    • Author(s)
      Brian Kenji Iwana, Letao Zhou, Kumiko Tanaka-Ishii and Seiichi Uchida
    • Organizer
      The 14th International Conference on Document Analysis and Recognition
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Scene Text Eraser2017

    • Author(s)
      Toshiki Nakamura, Anna Zhu, Keiji Yanai and Seiichi Uchida
    • Organizer
      The 14th International Conference on Document Analysis and Recognition
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] 畳み込みニューラルネットワーク(CNN)を用いた手書き文字から活字文字への変換2017

    • Author(s)
      森 みづき, 中村俊貴, 内田誠一
    • Organizer
      電気・情報関係学会九州支部連合大会
    • Related Report
      2017 Research-status Report
  • [Remarks] ヒューマンインタフェース研究室ホームページ

    • Related Report
      2018 Annual Research Report
  • [Remarks] ヒューマンインターフェス研究室

    • URL

      http://human.ait.kyushu-u.ac.jp/

    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-07-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi