• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Metabolome- and genome-wide profiling for prevention of chronic kidney disease in a population-based study

Research Project

Project/Area Number 17K19838
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Research Field Society medicine, Nursing, and related fields
Research InstitutionKeio University

Principal Investigator

TAKEBAYASHI Toru  慶應義塾大学, 医学部(信濃町), 教授 (30265780)

Co-Investigator(Kenkyū-buntansha) 原田 成  慶應義塾大学, 医学部(信濃町), 講師 (10738090)
Project Period (FY) 2017-06-30 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥5,720,000 (Direct Cost: ¥4,400,000、Indirect Cost: ¥1,320,000)
Keywordsメタボローム疫学 / 個別化予防医療 / メタボロミクス疫学 / ゲノム疫学 / GWAS / 慢性腎臓病 / メタボローム / ゲノム
Outline of Final Research Achievements

Measurement reproductibility of urine metabolomics by CE/MS was high enough. Although genome-metabolome association analysis did not show statistical significant results due to sample size reason, some key metabolites were found to be highly correlated with certain types of SNPs. Similar results were observed for GWAS analysis of kidney function. These results implies that increase in sample size, which is on-going up to 10000 samples, could lead to scientifically significant results with multi-omics approach of prevention of chronic kidney results.

Academic Significance and Societal Importance of the Research Achievements

本研究では、ゲノムとメタボロームのマルチオミクス解析を地域在住者のコホート研究に適用し、その予防に資する代謝物と遺伝子多型の関連を探索的に検討する取り組みであった。本研究実施時点では、サンプルサイズの限界のために有意な結果は得られなかったが、鍵となる代謝物、遺伝子多型の関連の方向は検出されており、この研究での方法論の検討を経て、DNAアレイ解析を全コホート対象者に拡大することで、予防医学的に意味にある成果へとつながる可能性が示唆された。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report

URL: 

Published: 2017-07-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi