• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

New developments for big data by non-sparse modeling

Research Project

Project/Area Number 17K19956
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Research Field Information science, computer engineering, and related fields
Research InstitutionUniversity of Tsukuba

Principal Investigator

AOSHIMA Makoto  筑波大学, 数理物質系, 教授 (90246679)

Co-Investigator(Kenkyū-buntansha) 矢田 和善  筑波大学, 数理物質系, 准教授 (90585803)
石井 晶  東京理科大学, 理工学部情報科学科, 助教 (20801161)
赤平 昌文  筑波大学, 数理物質系(名誉教授), 名誉教授 (70017424)
Project Period (FY) 2017-06-30 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2017: ¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Keywords非スパースモデリング / スパイクノイズ / ビッグデータ / 人工知能 / ディープラーニング
Outline of Final Research Achievements

In this study, we reviewed the previous academic systems based on sparsity and focused on non-sparsity of high-dimensional data. By using the non-sparsity, we aimed to develop new technology that can extract the maximum information at high speed and with high accuracy from a wide range of big data, and aimed for innovative development in science, technology and industry. We produced the following significant results: (1) Developments of a criteria for non-sparsity and basic methodologies for latent structure analysis. (2) Construction of data transformation from non-sparse noise into sparse noise. (3) Establishment of non-sparse modeling techniques and new development of big data analysis.

Academic Significance and Societal Importance of the Research Achievements

ビッグデータ解析は、様々な都合から、スパース性を仮定したスパースモデリング(SM)が主流である。しかし実際には、スパース性が成立しないビッグデータも多く、SMは間違った結果を与え得る。本研究は、非スパース性に立脚した非スパースモデリングという、ビッグデータの新たな解析技法を確立する。ビッグデータの本質に合ったモデリング技法を提供することで、学術上の突破口を切り拓くこととなり、波及効果は極めて大きい。非スパースモデリングは、高精度かつ高速で汎用性が非常に高い方法論であるため、科学技術・産業への革新的なインパクトや貢献が期待できる。

Report

(3 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • Research Products

    (33 results)

All 2019 2018 2017 Other

All Int'l Joint Research (3 results) Journal Article (9 results) (of which Peer Reviewed: 9 results,  Open Access: 9 results) Presentation (18 results) (of which Int'l Joint Research: 12 results,  Invited: 15 results) Book (1 results) Remarks (1 results) Funded Workshop (1 results)

  • [Int'l Joint Research] Princeton University(米国)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] Academia Sinica(中国)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] Seoul National University(韓国)

    • Related Report
      2018 Annual Research Report
  • [Journal Article] Equality tests of high-dimensional covariance matrices under the strongly spiked eigenvalue model2019

    • Author(s)
      Ishii Aki, Yata Kazuyoshi, Aoshima Makoto
    • Journal Title

      Journal of Statistical Planning and Inference

      Volume: 202 Pages: 99-111

    • DOI

      10.1016/j.jspi.2019.02.002

    • NAID

      120007133560

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Inference on high-dimensional mean vectors under the strongly spiked eigenvalue model2019

    • Author(s)
      A. ishii, K. Yata, M. Aoshima
    • Journal Title

      Japanese Journal of Statistics and Data Science

      Volume: 印刷中 Issue: 1 Pages: 105-128

    • DOI

      10.1007/s42081-018-0029-z

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 日本統計学会賞受賞者特別寄稿論文:高次元統計解析: 理論と方法論の新しい展開2018

    • Author(s)
      青嶋 誠
    • Journal Title

      日本統計学会誌

      Volume: 48 Pages: 89-111

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] High-dimensional quadratic classifiers in non-sparse settings.2018

    • Author(s)
      Aoshima, M., Yata, K.
    • Journal Title

      Methodology and Computing in Applied Probability

      Volume: to appear Issue: 3 Pages: 663-682

    • DOI

      10.1007/s11009-018-9646-z

    • NAID

      120007132793

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Distance-based classifier by data transformation for high-dimension, strongly spiked eigenvalue models2018

    • Author(s)
      Aoshima, M., Yata, K.
    • Journal Title

      Annals of the Institute of Statistical Mathematics

      Volume: to appear Issue: 3 Pages: 473-503

    • DOI

      10.1007/s10463-018-0655-z

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] 統計的推測理論の深化と進展のヒストリー2018

    • Author(s)
      赤平 昌文
    • Journal Title

      日本統計学会誌

      Volume: 47 Pages: 51-76

    • NAID

      130007495885

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Two-sample tests for high-dimension, strongly spiked eigenvalue models2018

    • Author(s)
      Aoshima, M., Yata, K.
    • Journal Title

      Statistica Sinica

      Volume: 28 Pages: 43-62

    • DOI

      10.5705/ss.202016.0063

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A high-dimensional two-sample test for non-Gaussian data under a strongly spiked eigenvalue model2017

    • Author(s)
      Ishii, A.
    • Journal Title

      Journal of the Japan Statistical Society

      Volume: 47 Pages: 273-291

    • NAID

      130007381676

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A two-sample test for high-dimension, low-sample-size data under the strongly spiked eigenvalue model2017

    • Author(s)
      Ishii, A.
    • Journal Title

      Hiroshima Mathematical Journal

      Volume: 47 Pages: 273-288

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Non-Sparse Modeling for High-Dimensional Data2019

    • Author(s)
      Aoshima Makoto
    • Organizer
      Waseda International Symposium ``Introduction of General Causality to Various Data & its Applications"
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] A high-dimensional quadratic classifier under the strongly spiked eigenvalue model2019

    • Author(s)
      Yata Kazuyoshi、Ishii Aki、Aoshima Makoto
    • Organizer
      The 14th Workshop on Stochastic Models, Statistics and their Application
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 強スパイク固有値モデルにおける高次元統計的推測2019

    • Author(s)
      石井晶
    • Organizer
      日本数学会2019年度年会
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Tests of High-Dimensional Mean Vectors and Its Application Under the SSE Model2019

    • Author(s)
      Aki Ishii、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      Waseda International Symposium ``Introduction of General Causality to Various Data & its Applications"
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] High-Dimensional Statistical Analysis: Non-Sparse Modeling, Geometric Representations and New PCAs2018

    • Author(s)
      Aoshima Makoto
    • Organizer
      2018 Workshop on High-Dimensional Statistical Analysis
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] New techniques in high-dimensional statistical analysis2018

    • Author(s)
      Aoshima Makoto
    • Organizer
      Waseda International Symposium ``Introduction of General Causality to Various Data & Its Innovation of The Optimal Inference"
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] High-dimensional statistical analysis under spiked models2018

    • Author(s)
      Aoshima Makoto
    • Organizer
      The Fourth Conference of the International Society for Nonparametric Statistics
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Inference on high-dimensional mean vectors under the strongly spiked eigenvalue model2018

    • Author(s)
      Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      The Ninth International Workshop on Applied Probability
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Tests of high-dimensional mean vectors under the SSE model2018

    • Author(s)
      Aki Ishii、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      International Symposium on Statistical Theory and Methodology for Large Complex Data
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Equality tests of high-dimensional covariance matrices on the basis of strongly spiked eigenvalues2018

    • Author(s)
      Aki Ishii、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      Waseda International Symposium ``Introduction of General Causality to Various Data & Its Innovation of The Optimal Inference"
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Equality tests for high-dimensional covariance matrices2018

    • Author(s)
      Aki Ishii、Yata Kazuyoshi、Aoshima Makoto
    • Organizer
      The 27th South Taiwan Statistics Conference
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] High-Dimensional Statistical Analysis by Non-Sparse Modeling2018

    • Author(s)
      Aoshima, M., Yata, K.
    • Organizer
      Waseda International Symposium “Recent Developments in Time Series Analysis: Quantile Regression, High Dimensional Data & Causality”
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] ノイズ掃き出し法を用いた高次元共分散行列の同等性検定2018

    • Author(s)
      石井 晶,矢田和善,青嶋 誠
    • Organizer
      日本数学会2018年度年会
    • Related Report
      2017 Research-status Report
  • [Presentation] High-dimensional Statistical Analysis for the SSE Model2017

    • Author(s)
      Aoshima, M.
    • Organizer
      A Symposium on Complex Data Analysis 2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 高次元統計解析:理論・方法論とその周辺(日本統計学会賞受賞者記念講演)2017

    • Author(s)
      青嶋 誠
    • Organizer
      2017年度統計関連学会連合大会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Asymptotic normality for inference on high-dimensional mean vectors under the SSE model2017

    • Author(s)
      矢田和善,青嶋 誠
    • Organizer
      日本数学会2017年度秋季総合分科会
    • Related Report
      2017 Research-status Report
  • [Presentation] Equality tests of covariance matrices based on eigenstructures in the highdimensional context2017

    • Author(s)
      石井 晶,矢田和善,青嶋 誠
    • Organizer
      日本学術振興会科学研究費による研究集会「大規模複雑データの理論と方法論,及び,関連分野への応用」
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 高次元データにおける固有空間の構造に基づいた共分散行列の同等性検定2017

    • Author(s)
      石井 晶,矢田和善,青嶋 誠
    • Organizer
      日本数学会2017年度秋季総合分科会
    • Related Report
      2017 Research-status Report
  • [Book] 高次元の統計学2019

    • Author(s)
      青嶋 誠、矢田 和善
    • Total Pages
      120
    • Publisher
      共立出版
    • ISBN
      9784320112636
    • Related Report
      2018 Annual Research Report
  • [Remarks] 青嶋研究室ホームページ

    • URL

      http://www.math.tsukuba.ac.jp/~aoshima-lab/jp/

    • Related Report
      2018 Annual Research Report 2017 Research-status Report
  • [Funded Workshop] International Symposium on Statistical Theory and Methodology for Large Complex Data2018

    • Related Report
      2018 Annual Research Report

URL: 

Published: 2017-07-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi