• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of mathematical optimization methods for discrete data useful in machine learning algorithms.

Research Project

Project/Area Number 17K19973
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Research Field Information science, computer engineering, and related fields
Research InstitutionKyoto University

Principal Investigator

Yamamoto Akihiro  京都大学, 情報学研究科, 教授 (30230535)

Co-Investigator(Kenkyū-buntansha) 西野 正彬  日本電信電話株式会社NTTコミュニケーション科学基礎研究所, 協創情報研究部, 特別研究員 (90794529)
Project Period (FY) 2017-06-30 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥6,370,000 (Direct Cost: ¥4,900,000、Indirect Cost: ¥1,470,000)
Fiscal Year 2019: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2017: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
Keywords機械学習 / 文脈自由文法 / 木構造 / 一階述語論理 / 帰納論理プログラミング / 最小汎化 / 文脈自由言語 / 木構造データ / 文字列データ / 距離計算 / 離散構造 / 構文解析木 / pq-gram距離 / BDD / 離散最適化 / 文字列構造
Outline of Final Research Achievements

Machine learning is now a fundamental technology in processing data in natural languages. If we convert natural language sentences converted into vectors of number and then applied the latest machine learning techniques, such as deep learning, we would meet difficulty in interpreting the meaning of the learning results. Moreover, we would have no guarantee that the natural structure of a sentence are adequately represented with vectors whose structure is very flat. In this study, we have developed optimization mathematics and algorithms for machine learning for parse trees in context-free languages, which are mathematical models of natural language data, sentences in first-order predicate logic, and patterns, which are direct algebraic representations of word sequences.

Academic Significance and Societal Importance of the Research Achievements

機械学習は自然言語データの処理における基本技術となっている.特に自然言語データを自然数ベクトルのデータに変換した上で,深層学習など最新の機械学習技術を適用する方法は大きな成果を上げつつある.しかし,深層学習は学習結果の意味を解釈しづらく,さらには文のもつ自然な構造がベクトルという平坦な構造で適切に表現できる保証はない.本研究で扱った,語の列である自然言語データ,あるいはそこから抽出した構文木を直接扱う機械学習アルゴリズムを用いれば,解釈可能な構造を表現した結果を出力することが期待される.

Report

(5 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (9 results)

All 2020 2019 2018 2017

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (8 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] Metric Learning for Ordered Labeled Trees with pq-grams2020

    • Author(s)
      Hikaru Shindo, Masaaki Nishino, Yasuaki Kobayashi, Akihiro Yamamoto
    • Journal Title

      Frontiers in Artificial Intelligence and Applications

      Volume: 325 Pages: 1475-1482

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] 久保田 稜,小島 健介,小林 靖明,山本 章博2020

    • Author(s)
      可換マッチング問題の固定パラメーター容易性に関する研究
    • Organizer
      人工知能学会 第113回 人工知能基本問題研究会(SIG-FPAI)
    • Related Report
      2020 Annual Research Report
  • [Presentation] Metric Learning for Ordered Labeled Trees with pq-grams2020

    • Author(s)
      Hikaru Shindo, Masaaki Nishino, Yasuaki Kobayashi, Akihiro Yamamoto
    • Organizer
      24th European Conference on Artificial Intelligence (ECAI2020)
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Metric Learning for Ordered Labeled Trees with pq-grams2019

    • Author(s)
      新藤光 , 西野正彬, 小林靖明, 山本章博
    • Organizer
      情報系 WINTERFESTA Episode 5
    • Related Report
      2019 Research-status Report
  • [Presentation] pq-gramを用いた木構造間の距離の学習2019

    • Author(s)
      新藤光 , 西野正彬, 小林靖明, 山本章博
    • Organizer
      人工知能学会 第 110 回人工知能基本問題研究会資料
    • Related Report
      2019 Research-status Report
  • [Presentation] 文字列データの線形最小汎化問題に対するアルゴリズム2019

    • Author(s)
      里見 琢聞, 小林 靖明, 山本 章博
    • Organizer
      人工知能学会 第109回人工知能基本問題研究会(SIG-FPAI)
    • Related Report
      2018 Research-status Report
  • [Presentation] Using Binary Decision Diagrams to Enumerate Inductive Logic2018

    • Author(s)
      Hikaru Shindo, Masaaki Nishino, Akihiro Yamamoto
    • Organizer
      28th International Conference on Inductive Logic Programming (ILP 2018),
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 二分決定グラフを用いた帰納論理プログラミングの階の列挙2018

    • Author(s)
      新藤光,西野正彬,山本章博
    • Organizer
      人工知能学会 人工知能基本問題研究会(第106回)
    • Related Report
      2017 Research-status Report
  • [Presentation] 文脈自由文法による構文木の集合を表現する決定グラフの高速な構築2017

    • Author(s)
      網井圭,西野正彬,山本章博
    • Organizer
      人工知能学会 人工知能基本問題研究会(第105回)電子情報通信学会 第166回アルゴリズム研究会 合同研究会
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-07-21   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi