• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on performance of deep learning performance based on random matrix theory

Research Project

Project/Area Number 17K19989
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Research Field Information science, computer engineering, and related fields
Research InstitutionInstitute of Physical and Chemical Research

Principal Investigator

Taki Masato  国立研究開発法人理化学研究所, 数理創造プログラム, 上級研究員 (70548221)

Project Period (FY) 2017-06-30 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥6,240,000 (Direct Cost: ¥4,800,000、Indirect Cost: ¥1,440,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Keywords機械学習 / 数理物理 / 数理工学 / 深層学習
Outline of Final Research Achievements

The origin of the high performance of deep learning (generalization performance) is a big mystery. The goal of this project was to tackle it with a mathematical and applied approach. Various computer experiments related to deep learning were able to be carried out by the computer environment that was prepared by this grant project. As a result, we have accumulated practical know-how that contributes to the performance improvement of deep learning. Utilizing that know-how, we were able to conduct applied research on experimental science data, etc., while taking advantage of the strengths of machine learning. In that case, the practical side by the computer experiment was important, but the improvement and adjustment of the machine learning model by the mathematical analysis also played a big role.

Academic Significance and Societal Importance of the Research Achievements

深層学習技術は、数理的側面と計算機科学的側面、そして応用を通じた実務的側面を持つが、その間の橋渡しを少しでもできるよう取り組んだ。科学における深層学習の応用研究はまだ始まって日が浅いが、共同研究者などをへ深層学習技術を提供することで、深層学習を使った科学研究が本邦でより進むよう本研究課題を進めた。また応用研究を通じて科学に適用する際の難しい点なども浮き彫りになり、それは今後の検討課題である。

Report

(4 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (4 results)

All 2020 2019 2017 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (1 results) (of which Invited: 1 results) Book (1 results) Remarks (1 results)

  • [Journal Article] First application of the super-resolution imaging technique using a Compton camera2020

    • Author(s)
      Sato,S.; Kataoka,J.; Kotoku,J.; Taki,M.; Oyama,A.; Tagawa,L.; Fujieda,K.; Nishi,F.; Toyoda,T.;
    • Journal Title

      NIM-A

      Volume: 969 Pages: 164034-164034

    • DOI

      10.1016/j.nima.2020.164034

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Presentation] 深層学習の応用二例:腫瘍組織画像と脳神経活動の解析について2019

    • Author(s)
      瀧雅人
    • Organizer
      医学と数学の接するところ
    • Related Report
      2018 Research-status Report
    • Invited
  • [Book] これならわかる深層学習入門2017

    • Author(s)
      瀧雅人
    • Total Pages
      352
    • Publisher
      講談社サイエンティフィック
    • ISBN
      4061538284
    • Related Report
      2017 Research-status Report
  • [Remarks] 騙されるAI

    • URL

      http://www.nikkei-science.com/202001_042.html

    • Related Report
      2019 Annual Research Report

URL: 

Published: 2017-07-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi