• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Performance improvement on neural networks that actively employ the constraints of hardware circuits

Research Project

Project/Area Number 17K20010
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Research Field Human informatics and related fields
Research InstitutionKyushu Institute of Technology

Principal Investigator

Tamukoh Hakaru  九州工業大学, 大学院生命体工学研究科, 准教授 (90432955)

Research Collaborator SUZUKI Akihiro  
HORI Sansei  
PRAMANTA Dinda  
YOENG JYE Yeoh  
FUENGFUSIN Ninnart  
Project Period (FY) 2017-06-30 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2018: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2017: ¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Keywordsニューラルネットワーク / 演算誤差 / ディジタルハードウェア / FPGA
Outline of Final Research Achievements

We employ rounding errors that occur in hardware circuits as random numbers for training restricted-Boltzmann Machine (RBM) neural networks. We also propose a modified dropout algorithm that employs a simple rule for training multi-layer perceptron (MLP), convolutional neural networks (CNN) and long-short-term memory (LSTM) neural networks. By using these proposed methods, we can reduce hardware resources for random number generators and improve the performance of neural networks implemented by hardware circuits.

Academic Significance and Societal Importance of the Research Achievements

深層学習が大きな注目を集めるにつれて,多数の回路研究者が深層学習のアクセラレータ開発へと集結している.しかし,ニューラルネットワークの理論やアルゴリズムにまで踏み込んだ回路実装に関する研究領域は未開拓で,特に消費電力や排熱が重要となる組込み化はこれからの領域である.本研究成果により,乱数生成に係わる一部分ではあるが,ニューラルネットワークを理論面から軽量化することに成功し,回路化への道筋を付けることができた.本成果により,我が国が得意とする組込みシステムや自動車・ロボット分野への深層学習応用について大きな貢献が期待できる.

Report

(3 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • Research Products

    (19 results)

All 2019 2018 2017 Other

All Int'l Joint Research (1 results) Journal Article (6 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 6 results,  Open Access: 2 results) Presentation (10 results) (of which Int'l Joint Research: 4 results,  Invited: 4 results) Remarks (2 results)

  • [Int'l Joint Research] カタルーニャ工科大学(スペイン)

    • Related Report
      2017 Research-status Report
  • [Journal Article] A Shared Synapse Architecture for Efficient FPGA Implementation of Autoencoders2018

    • Author(s)
      Suzuki, T. Morie, and H. Tamukoh
    • Journal Title

      PLoA ONE

      Volume: 13 Issue: 3 Pages: e0194049-e0194049

    • DOI

      10.1371/journal.pone.0194049

    • NAID

      120007035848

    • Related Report
      2018 Annual Research Report 2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Alternative Dropout for Hardware Implementation in Recurrent Neural Networks,2018

    • Author(s)
      Yoeng Jye Yeoh, Hakaru Tamukoh
    • Journal Title

      Proc. of 2018 International Workshop on Smart Info-Media Systems in Asia (SISA2018)

      Volume: -

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Reverse Reconstruction of Anomaly Input Using Autoencoders2018

    • Author(s)
      Akihiro Suzuki, Hakaru Tamukoh
    • Journal Title

      Proc. of 2018 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS2018)

      Volume: -

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Synchronization of Pulse-Coupled Phase Oscillators over Multi-FPGA Communication Links2017

    • Author(s)
      Dinda Pramanta, Takashi Morie, Hakaru Tamukoh
    • Journal Title

      Journal of Robotics, Networking and Artificial Life

      Volume: 4 Pages: 91-96

    • NAID

      120007035858

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] A Hardware-Oriented Dropout Algorithm for Efficient FPGA Implementation2017

    • Author(s)
      Yeoh Yoeng Jye、Morie Takashi、Tamukoh Hakaru
    • Journal Title

      Lecture Notes in Computer Science

      Volume: 10639 Pages: 821-829

    • DOI

      10.1007/978-3-319-70136-3_87

    • ISBN
      9783319701356, 9783319701363
    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] An Implementation of a Spiking Neural Network Using Digital Spiking Silicon Neuron Model on a SIMD Processor2017

    • Author(s)
      Sansei Hori, Mireya Zapata, Jordi Madrenas, Takashi Morie and Hakaru Tamukoh
    • Journal Title

      Lecture Notes in Computer Science

      Volume: 10613 Pages: 437-438

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] ニューラルネットワークのハードウェア実装に向けた乱数生成手法の提案と検証2019

    • Author(s)
      堀 三晟,田向 権
    • Organizer
      電子情報通信学会スマートインフォメディアシステム研究会(SIS)
    • Related Report
      2018 Annual Research Report
  • [Presentation] Alternative Dropout for Hardware Implementation in Recurrent Neural Networks2018

    • Author(s)
      Yoeng Jye Yeoh, Hakaru Tamukoh
    • Organizer
      2018 International Workshop on Smart Info-Media Systems in Asia (SISA2018)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Reverse Reconstruction of Anomaly Input Using Autoencoders2018

    • Author(s)
      Akihiro Suzuki, Hakaru Tamukoh
    • Organizer
      2018 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS2018)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 高速化・省電力化が期待されるロボットの知的処理2018

    • Author(s)
      田向 権,西田 健,石田 裕太郎
    • Organizer
      電子情報通信学会リコンフィギャラブルシステム研究会(RECONF)
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] 高速化・省電力化が期待されるロボットの知的処理2018

    • Author(s)
      田向 権,西田 健,石田裕太郎
    • Organizer
      電子情報通信学会リコンフィギャラブルシステム研究会(RECONF)
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 乱数生成器不要の簡略型Dropoutアルゴリズム2017

    • Author(s)
      ヨー ヨン ジェ,森江 隆,田向 権
    • Organizer
      第27回日本神経回路学会全国大会(JNNS2017)
    • Related Report
      2017 Research-status Report
  • [Presentation] An Implementation of a Spiking Neural Network Using Digital Spiking Silicon Neuron Model on a SIMD Processor,2017

    • Author(s)
      Sansei Hori, Mireya Zapata, Jordi Madrenas, Takashi Morie and Hakaru Tamukoh
    • Organizer
      26th International Conference on Artificial Neural Networks (ICANN2017)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] A Hardware Oriented Dropout Algorithm for Efficient FPGA Implementation2017

    • Author(s)
      Yoeng Jye Yeoh, Takashi Morie and Hakaru Tamukoh
    • Organizer
      24th International Conference on Neural Information Processing (ICONIP2017)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] サービスロボットのための ソフトコンピューティングと hw/sw複合体2017

    • Author(s)
      田向 権
    • Organizer
      第30回回路とシステムのワークショップ
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] サービスロボットのための知的処理と組込指向ニューラルネットワーク2017

    • Author(s)
      田向 権
    • Organizer
      DAシンポジウム
    • Related Report
      2017 Research-status Report
    • Invited
  • [Remarks] 九州工業大学 田向研究室

    • URL

      https://www.brain.kyutech.ac.jp/~tamukoh/

    • Related Report
      2018 Annual Research Report
  • [Remarks] 田向研究室

    • URL

      http://www.brain.kyutech.ac.jp/~tamukoh/

    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-07-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi