• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of a platform for analysis of receptor binding by industrial chemicals

Research Project

Project/Area Number 17K20043
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Research Field Environmental analyses and evaluation and related fields
Research InstitutionKyoto University

Principal Investigator

Brown John  京都大学, 医学研究科, 講師 (90583188)

Project Period (FY) 2017-06-30 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2017: ¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Keywords核内受容体 / 化学物質 / 人工知能 / 能動的学習 / 分子設計 / 安全評価 / 可視化 / AI / 評価統計選択 / 画像化 / 相互作用 / 受容体 / 計算創薬 / 安全性 / 化審法 / ケモジェノミクス
Outline of Final Research Achievements

Many side effects of drugs and inflammation reactions are the result of drugs and other chemicals interacting with multiple receptors. An ideal safety policy would be to test all chemicals against all receptors, but this is unrealistic due to expenses and limited resources. As a result, there is a societal need to apply machine learning (AI) techniques which can reduce the number of experimental validations required. In this research, we explored the challenge of developing machine learning models for protein families involved in cellular regulation, namely nuclear hormone receptors and metabolic CYP450 enzymes. Our results proved the ability to build highly predictive models for these protein families. The methods developed in the research can be used by regulatory agencies, and can contribute to reduction of risk on the human population.

Academic Significance and Societal Importance of the Research Achievements

工場などで排出される空気に複数の化学物質が含まれている。人体に対する安全性を確認するため、化学物質の分子的な作用機序を明確にする必要がある。本研究は細胞制御と代謝に関連するタンパク質に対する化学物質の結合性を予測する手法を開発でき、次世代安全対策に貢献する技術を成立できた。
また、開発した手法は、活用が期待される人工知能(AI)をどのように評価と解釈をすれば良いかという課題に大きく貢献し、学術的にも社会的にも意義がある。

Report

(3 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • Research Products

    (26 results)

All 2018 2017 Other

All Int'l Joint Research (3 results) Journal Article (4 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results,  Open Access: 2 results) Presentation (14 results) (of which Int'l Joint Research: 8 results,  Invited: 11 results) Book (1 results) Remarks (4 results)

  • [Int'l Joint Research] Massachusetts Institute of Technology(米国)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] ETH Zurich(スイス)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] 米国立衛生研究所/米国立環境健康研究所(米国)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Adaptive mining and model building of medicinal chemistry data with a multi-metric perspective.2018

    • Author(s)
      Brown JB
    • Journal Title

      Future Med Chem.

      Volume: 10 Issue: 16 Pages: 1885-1887

    • DOI

      10.4155/fmc-2018-0188

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Selection of Informative Examples in Chemogenomic Datasets2018

    • Author(s)
      Reker Daniel、Brown J. B.
    • Journal Title

      Methods in Molecular Biology

      Volume: 1825 Pages: 369-410

    • DOI

      10.1007/978-1-4939-8639-2_13

    • ISBN
      9781493986385, 9781493986392
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Journal Article] Chemogenomic Active Learning's Domain of Applicability on Small, Sparse qHTS Matrices: A Study Using Cytochrome P450 and Nuclear Hormone Receptor Families2018

    • Author(s)
      Rakers Christin、Najnin Rifat Ara、Polash Ahsan Habib、Takeda Shunichi、Brown J.B.
    • Journal Title

      ChemMedChem

      Volume: 13 Issue: 6 Pages: 511-521

    • DOI

      10.1002/cmdc.201700677

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Classifiers and their Metrics Quantified2018

    • Author(s)
      Brown J. B.
    • Journal Title

      Molecular Informatics

      Volume: 37 Issue: 1-2 Pages: 1700127-1700127

    • DOI

      10.1002/minf.201700127

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Dynamic selection of ligand-target pairs toward construction of a minimal-size training set for chemogenomic model building2018

    • Author(s)
      J.B. Brown
    • Organizer
      Vertex Pharmaceuticals Molecular Modeling Group Seminar
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Chemogenomic active learning - new frontiers based on an old concept2018

    • Author(s)
      J.B. Brown
    • Organizer
      OpenEye JCUP IX
    • Related Report
      2018 Annual Research Report
  • [Presentation] 構造活性相関情報を効率的に選択する能動的学習の医薬品開発応用への最新結果と課題2018

    • Author(s)
      J.B. Brown
    • Organizer
      構造活性フォーラム2018
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Why adaptively-built simple models using small datasets can be sufficient for chemical modeling2018

    • Author(s)
      J.B. Brown
    • Organizer
      Chemoinformatics Strasbourg Summer School (CS3)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 生命科学と医薬学における人工知能の応用及び人工知能の最新評価方法論2018

    • Author(s)
      J.B. Brown
    • Organizer
      岐阜大学情報学研究科 生命情報集中講義
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Binary classification metric surfaces2018

    • Author(s)
      J.B. Brown
    • Organizer
      University of Bonn Open Workshop Computational Chemical Biology and Chemogenomics
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Active learning of ligand-target interactions to build minimally complex yet maximally predictive interaction models2018

    • Author(s)
      J.B. Brown
    • Organizer
      International Chemical Biology Society Annual Meeting 2018
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Frontiers Unveiled by Active Learning2018

    • Author(s)
      J.B. Brown
    • Organizer
      Asian Hub for e-Drug Discovery (AHeDD) 2018
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Adaptive pattern extraction underpins rethinking the role of big data2018

    • Author(s)
      J.B. Brown
    • Organizer
      ETH RETHINK kickoff symposium
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Searching for the right ligand-target interaction predictions to validate by physics-based methods2018

    • Author(s)
      J.B. Brown
    • Organizer
      Osaka University Institute for Protein Research seminar
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] The nature of metrics used to evaluate binary classifier models in drug discovery and design2018

    • Author(s)
      J.B. Brown
    • Organizer
      ETH Zurich Department of Chemistry and Applied Biosciences seminar
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Chemogenomic active learning, including an in-depth look at classification metrics2018

    • Author(s)
      J.B. Brown
    • Organizer
      OpenEye CUP XVIII
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Dynamic selection of ligand-target pairs toward construction of a minimal-size training set for chemogenomic model building2018

    • Author(s)
      J.B. Brown
    • Organizer
      Vertex Pharmaceuticals internal seminar
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Finding the essential gems in your assay data: the chemogenomic active learning method2017

    • Author(s)
      J.B. Brown
    • Organizer
      NIH/NIEHS Internal Seminar
    • Related Report
      2017 Research-status Report
  • [Book] Computational Chemogenomics. Methods in Molecular Biology, vol 18252018

    • Author(s)
      J.B. Brown
    • Total Pages
      452
    • Publisher
      Humana Press
    • ISBN
      9781493986385
    • Related Report
      2018 Annual Research Report
  • [Remarks] AI評価に関する財経新聞記事

    • URL

      https://www.zaikei.co.jp/article/20180307/430260.html

    • Related Report
      2017 Research-status Report
  • [Remarks] AI評価に関する財経新聞記事

    • URL

      https://www.nikkan.co.jp/articles/view/00463654

    • Related Report
      2017 Research-status Report
  • [Remarks] AI評価に関する財経新聞記事

    • URL

      http://www.kyoto-u.ac.jp/ja/research/research_results/2017/180214_2.html

    • Related Report
      2017 Research-status Report
  • [Remarks] AI評価に関する財経新聞記事

    • URL

      https://www.eurekalert.org/pub_releases/2018-03/ku-hai031418.php

    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-07-21   Modified: 2022-02-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi