• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Qualitative study on model equations arising in mathematical biology from a viewpoint of the bifurcation theory

Research Project

Project/Area Number 17KK0086
Research Category

Fund for the Promotion of Joint International Research (Fostering Joint International Research)

Allocation TypeMulti-year Fund
Research Field Mathematical analysis
Research InstitutionThe University of Tokyo

Principal Investigator

Miyamoto Yasuhito  東京大学, 大学院数理科学研究科, 准教授 (90374743)

Research Collaborator Hilhorst Danielle  Centre National de la Recherche Scientifique(CNRS)/Université de Paris-Sud, Départment de Mathématiques d'Orsay, Emeritus Directrice de recherche au CNRS
Bataillon Chirstian  
Bouguezzi Meriem  
Lequien Florence  
Rouillard Fabien  
Scheid Jean-Francois  
Matano Hiroshi  
Project Period (FY) 2018
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥5,980,000 (Direct Cost: ¥4,600,000、Indirect Cost: ¥1,380,000)
Keywords楕円型偏微分方程式 / 放物型偏微分方程式 / 分岐理論 / 自由境界問題 / 一層ステファン問題 / 比較定理 / 強最大値原理 / 半線形楕円型方程式 / 反応拡散方程式 / 活性化因子・抑制因子系 / 数理生物学
Outline of Final Research Achievements

We propose a mathematical model, which is a system of partial differential equations, in order to clarify the mechanism of corrosion of a material, and study qualitative properties of a solution by numerical simulation. We also study a simplified model mathematically.
Specifically, we construct a full model and do numerical simulations. Since the full model is difficult to analyze mathematically, we start to study a one-dimensional problem of a simplified equation and give a proof of mathematical properties.
The simplified model is equivalent to the classical one-phase Stefan problem, and hence the existence and uniqueness of solution hold. We also study an asymptotic behavior of the solution.

Academic Significance and Societal Importance of the Research Achievements

金属の腐食現象のメカニズムを解明することによって,材料の劣化に対抗し,適切な材料の保護の方法を確立する手助けとなることが期待される.そして,それは使用済みの放射性廃棄物を詰めた容器の腐食の問題などに,応用が可能であると期待される.
また,数学的には,長い研究の歴史がある1層ステファン問題に対して,新しい結果(解の漸近挙動)を数学的に証明したこととなり,解の挙動に関して新たな視点を与えた.

Report

(2 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • Research Products

    (2 results)

All 2018

All Int'l Joint Research (1 results) Presentation (1 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results)

  • [Int'l Joint Research] Universite Paris-Sud(フランス)2018

    • Year and Date
      2018-09-12
    • Related Report
      2018 Annual Research Report
  • [Presentation] Exact eigenvalues and eigenfunctions for a one-dimensional Gel'fand problem2018

    • Author(s)
      Y. Miyamoto
    • Organizer
      Journee d'Analyse Non Lineaire
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited

URL: 

Published: 2018-01-25   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi