Development of computationally designed diversity-oriented catalysis based on transition-state control
Project/Area Number |
17KT0011
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Multi-year Fund |
Section | 特設分野 |
Research Field |
Transition State Control
|
Research Institution | Rikkyo University |
Principal Investigator |
|
Project Period (FY) |
2017-07-18 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥15,860,000 (Direct Cost: ¥12,200,000、Indirect Cost: ¥3,660,000)
Fiscal Year 2019: ¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2018: ¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2017: ¥6,760,000 (Direct Cost: ¥5,200,000、Indirect Cost: ¥1,560,000)
|
Keywords | 遷移状態制御 / 分子触媒設計 / DFT計算 / 不斉合成 / 不斉分子触媒 / 理論計算 / 合理設計 / 遷移状態 |
Outline of Final Research Achievements |
Development of highly efficient and selective molecular catalysts with leading theoretical calculations and the establishment of a rational design method for these catalysts were carried out in cooperation with experimental studies. Focusing on asymmetric catalysis of organocatalysts and multinuclear catalysts with multiple interaction points in which various types of transition states are latently existed, we have developed an exhaustive search method for transition states using GRRM and AFIR methods, as well as DFT calculations to elucidate the stereocontrol mechanism. In this research, we have established a certain guideline for the exhaustive search of many potential transition states in the reaction system and clarified high stereoselectivities achieved by stabilizing the transition states through the catalyst/substrate attractive interaction network in which different types of interactions are harmonized on the single reaction sphere.
|
Academic Significance and Societal Importance of the Research Achievements |
近年の計算機や計算手法の進展により、理論計算に基づいて所望の分子を合理設計できる時代が到来している。現状では実験結果の説明のために散発的に実施されるにとどまっており、理論計算の先導的な活用は、高選択的反応・触媒開発の新しい方法論として挑戦的な課題であった。この実現のためには、多様な遷移状態を効率的に網羅探索し、反応制御の鍵となる遷移状態を確定する必要があるが、本研究によって、現実的な計算時間で遷移状態を網羅探索する手法に一定の指針を確立した点は、異種相互作用の協働による遷移状態制御の解明とともに学術的に意義深い。これらの成果は、現代社会を支える基幹技術としての分子触媒開発に貢献したといえる。
|
Report
(4 results)
Research Products
(35 results)