• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Improving sustainability, flexibility, and robustness of artifactitious systems using emergence of divisional cooperation

Research Project

Project/Area Number 17KT0044
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeMulti-year Fund
Section特設分野
Research Field Intensification of Artifact Systems
Research InstitutionWaseda University

Principal Investigator

Sugawara Toshiharu  早稲田大学, 理工学術院, 教授 (70396133)

Project Period (FY) 2017-07-18 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥18,330,000 (Direct Cost: ¥14,100,000、Indirect Cost: ¥4,230,000)
Fiscal Year 2020: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2019: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2018: ¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2017: ¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Keywordsマルチエージェントシステム / 持続可能性 / 分業 / 強化学習 / 交渉 / 自律分散システム / タスク委託 / ノルム / 進化計算 / 協調体制 / 交渉プロトコル / 巡回問題 / 分業体制 / 人工知能、 / エージェント / 機械学習 / 協調
Outline of Final Research Achievements

Recent developments in computer/AI and machine technology have led to promising applications of multi-agent systems consisting of multiple intelligent agents (e.g., self-driving robots) that make decisions autonomously and cooperate/coordinate with each other. Because agents are often software programs running on computers and/or controlling machines, their replacement, renewal, and periodic inspections are mandatory to maintain the sustainability and robustness of the system. However, there is a temporary but significant loss of performance that occurs when they are stopped for these purposes. To mitigate this, we proposed a negotiation method in which agents delegate tasks, especially important ones, to others. We also pursued a learning method that builds organization and division of labor among agents in a bottom-up manner to increase overall efficiency. We believe that our results have received academic recognition, including presentations at top-level conferences in this field.

Academic Significance and Societal Importance of the Research Achievements

少子化問題や危険箇所での作業など、人間の代理として作業する機械(ロボット等)が期待されている。特に、広大な範囲や複雑な作業が必要な時には、複数のロボットなどの協力が必要である。エージェントは、これらの機械を制御するソフトウェアであり、中心的な存在である。本研究では、これらの知的なエージェントが、学習を通じて自ら担当する作業を決定する分業化により全体の効率を上げると共に、更新や定期点検などが予定されている場合には、やはり自律的な交渉を通して協力的に仕事を補完・委託し合い、その効率低下を最小限に押さえる手法を提案している。

Report

(6 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • Research Products

    (52 results)

All 2022 2021 2020 2019 2018 2017

All Journal Article (39 results) (of which Peer Reviewed: 34 results,  Open Access: 6 results) Presentation (13 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results)

  • [Journal Article] Standby-Based Deadlock Avoidance Method for Multi-Agent Pickup and Delivery Tasks2022

    • Author(s)
      Tomoki Yamauchi, Yuki Miyashita and Toshiharu Sugawara
    • Journal Title

      Proceedings of the 21st International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2022)

      Volume: 1

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Task Handover Negotiation Protocol for Planned Suspension Based on Estimated Chances of Negotiations in Multi-Agent Patrolling2022

    • Author(s)
      Sota Tsuiki, Keisuke Yoneda and Toshiharu Sugawara
    • Journal Title

      Proceedings of the 14th International Conference on Agents and Artificial Intelligence

      Volume: 1 Pages: 83-93

    • DOI

      10.5220/0010896900003116

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Coordinated Control Method for Ridesharing Service Area Using Deep Reinforcement Learning2021

    • Author(s)
      吉田 直樹, 野田 五十樹, 菅原 俊治
    • Journal Title

      Transactions of the Japanese Society for Artificial Intelligence

      Volume: 36 Issue: 5 Pages: AG21-D_1-10

    • DOI

      10.1527/tjsai.36-5_AG21-D

    • NAID

      130008082559

    • ISSN
      1346-0714, 1346-8030
    • Year and Date
      2021-09-01
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Path and Action Planning in Non-Uniform Environments for Multi-Agent Pickup and Delivery Tasks2021

    • Author(s)
      Tomoki Yamauchi, Yuki Miyashita and Toshiharu Sugawara
    • Journal Title

      Proceedings of the 18th European Conference on Multi-Agent Systems (EUMAS 2021)

      Volume: LNCS 12802 Pages: 37-54

    • DOI

      10.1007/978-3-030-82254-5_3

    • ISBN
      9783030822538, 9783030822545
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Reducing Efficiency Degradation Due to Scheduled Agent Suspensions by Task Handover in Multi-Agent Cooperative Patrol Problems2021

    • Author(s)
      Sota Tsuiki, Keisuke Yoneda, and Toshiharu Sugawara
    • Journal Title

      Proceedings of the 34th International Florida Artificial Intelligence Research Society Conference

      Volume: 34 Issue: 1

    • DOI

      10.32473/flairs.v34i1.128442

    • Related Report
      2021 Annual Research Report 2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Analysis of Coordinated Behavior Structures with Multi-Agent Deep Reinforcement Learning2021

    • Author(s)
      Yuki Miyashita and Toshiharu Sugawara
    • Journal Title

      Applied Intelligence

      Volume: 51 Issue: 2 Pages: 1069-1085

    • DOI

      10.1007/s10489-020-01832-y

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Distributed Service Area Control for Ride Sharing by Using Multi-Agent Deep Reinforcement Learning2021

    • Author(s)
      Naoki Yoshida, Itsuki Noda and Toshiharu Sugawara
    • Journal Title

      Proceedings of the 13th International Conference on Agents and Artificial Intelligence

      Volume: 1 Pages: 101-112

    • DOI

      10.5220/0010310901010112

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Effective Area Partitioning in a Multi-agent Patrolling Domain for Better Efficiency2021

    • Author(s)
      Katsuya Hattori and Toshiharu Sugawara
    • Journal Title

      Proceedings of the 13th International Conference on Agents and Artificial Intelligence

      Volume: 1 Pages: 281-288

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Fair and Effective Elevator Car Dispatching Method for Elevator Group Control System Using Noisy Information from Cameras2020

    • Author(s)
      山内 智貴, 井手 理菜, 菅原 俊治
    • Journal Title

      電子情報通信学会論文誌D 情報・システム

      Volume: J103-D Issue: 11 Pages: 776-787

    • DOI

      10.14923/transinfj.2019SGP0006

    • ISSN
      1880-4535, 1881-0225
    • Year and Date
      2020-11-01
    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Policy Advisory Module for Exploration Hindrance Problem in Multi-agent Deep Reinforcement Learning2020

    • Author(s)
      Jiahao Peng and Toshiharu Sugawara
    • Journal Title

      Proceedings of the 23rd International Conference on Principles and Practice of Multi-Agent Systems (PRIMA 2020)

      Volume: LNAI 12568 Pages: 1-17

    • DOI

      10.1007/978-3-030-69322-0_9

    • ISBN
      9783030693213, 9783030693220
    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Meta-Reward Model Based on Trajectory Data with k-Nearest Neighbors Method2020

    • Author(s)
      Xiaohui Zhu and Toshiharu Sugawara
    • Journal Title

      Proceedings of 2020 International Conference on Neural Networks (IJCNN 2020)

      Volume: IEEE Xplore Pages: 1-8

    • DOI

      10.1109/ijcnn48605.2020.9207388

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Multi-agent Service Area Adaptation for Ride-Sharing Using Deep Reinforcement Learning2020

    • Author(s)
      Naoki Yoshida, Itsuki Noda and Toshiharu Sugawara
    • Journal Title

      18th International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS 2020)

      Volume: LNAI 12092 Pages: 363-375

    • DOI

      10.1007/978-3-030-49778-1_29

    • ISBN
      9783030497774, 9783030497781
    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Coordinated Behavior of Cooperative Agents Using Deep Reinforcement Learning2020

    • Author(s)
      Elhadji Amadou Oury Diallo, Ayumi Sugiyama and Toshiharu Sugawara
    • Journal Title

      Neurocomputing

      Volume: 396 Pages: 230-240

    • DOI

      10.1016/j.neucom.2018.08.094

    • Related Report
      2020 Research-status Report 2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Multi-Agent Pattern Formation: a Distributed Model-Free Deep Reinforcement Learning Approach2020

    • Author(s)
      Elhadji Amadou Oury Diallo and Toshiharu Sugawara
    • Journal Title

      Proceedings of 2020 International Conference on Neural Networks (IJCNN 2020)

      Volume: 採択済み

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Learning Efficient Coordination Strategy for Multi-Step Tasks in Multi-Agent Systems using Deep Reinforcement Learning2020

    • Author(s)
      Zean Zhu, Elhadji Amadou Oury Diallo, and Toshiharu Sugawara
    • Journal Title

      Proceedings of the 12th International Conference on Agents and Artificial Intelligence - Volume 1

      Volume: - Pages: 287-294

    • DOI

      10.5220/0009160102870294

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Multi-Agent Pattern Formation with Deep Reinforcement Learning2020

    • Author(s)
      Elhadji Amadou Oury Diallo, and Toshiharu Sugawara
    • Journal Title

      Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI 2020), (Student Abstract Track)

      Volume: -

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Improvement of Multi-agent Continuous Cooperative Patrolling with Learning of Activity Length2019

    • Author(s)
      Ayumi Sugiyama, Lingying Wu and Toshiharu Sugawara
    • Journal Title

      Agents and Artificial Intelligence (LNCS)

      Volume: 11978 Pages: 270-292

    • DOI

      10.1007/978-3-030-37494-5_14

    • ISBN
      9783030374938, 9783030374945
    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Coordination in Collaborative Work by Deep Reinforcement Learning with Various State Descriptions2019

    • Author(s)
      Yuki Miyashita and Toshiharu Sugawara
    • Journal Title

      Proceedings of the 22nd International Conference on Principles and Practice of Multi-Agent Systems

      Volume: LNCS 11873 Pages: 550-558

    • DOI

      10.1007/978-3-030-33792-6_40

    • ISBN
      9783030337919, 9783030337926
    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Strategies for Energy-Aware Multi-Agent Continuous Cooperative Patrolling Problems subject to Requirements2019

    • Author(s)
      Lingying Wu and Toshiharu Sugawara
    • Journal Title

      Proceedings of the 22nd International Conference on Principles and Practice of Multi-Agent Systems

      Volume: LNCS 11873 Pages: 585-593

    • DOI

      10.1007/978-3-030-33792-6_44

    • ISBN
      9783030337919, 9783030337926
    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Cooperation and Coordination Regimes by Deep Q-Learning in Multi-agent Task Executions2019

    • Author(s)
      Yuki Miyashita and Toshiharu Sugawara
    • Journal Title

      Proceedings of the 28th International Conference on Artificial Neural Networks

      Volume: LNCS 11727 Pages: 541-554

    • DOI

      10.1007/978-3-030-30487-4_42

    • ISBN
      9783030304867, 9783030304874
    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Energy-Efficient Strategies for Multi-Agent Continuous Cooperative Patrolling Problems2019

    • Author(s)
      Lingying Wu, Ayumi Sugiyama and Toshiharu Sugawara
    • Journal Title

      Proceedings of 23rd International Conference on Knowledge-Based and Intelligent Information and Engineering Systems ( Procedia Computer Science)

      Volume: 159 Pages: 465-474

    • DOI

      10.1016/j.procs.2019.09.201

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Coordination Structures Generated by Deep Reinforcement Learning in Distributed Task Executions2019

    • Author(s)
      Yuki Miyashita and Toshiharu Sugawara
    • Journal Title

      Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems

      Volume: - Pages: 2129-2131

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Coordination Structures Generated by Deep Reinforcement Learning in Distributed Task Executions2019

    • Author(s)
      Yuki Miyashita、Toshiharu Sugawarajavascript:onTransientSave()
    • Journal Title

      Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS2019)

      Volume: 印刷中

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Strategies for Energy-Efficient Multi-Agent Continuous Patrolling Tasks2019

    • Author(s)
      Lingying Wu, Ayumi Sugiyama, Toshiharu Sugawara
    • Journal Title

      情報処理学会研究報告

      Volume: 2019-ICS-194

    • Related Report
      2018 Research-status Report
  • [Journal Article] 巡回問題における能力の異なる複数エージェントの自律的な行動決定手法2019

    • Author(s)
      岩田 裕登, 杉山 歩未, 菅原 俊治
    • Journal Title

      情報処理学会研究報告

      Volume: 2019-ICS-194

    • Related Report
      2018 Research-status Report
  • [Journal Article] Learning of Activity Cycle Length Based on Battery Limitation in Multi-Agent Continuous Cooperative Patrol Problems2019

    • Author(s)
      Ayumi Sugiyama, Lingying Wu, Toshiharu Sugawara
    • Journal Title

      Proceedings of the 11th International Conference on Agents and Artificial Intelligence

      Volume: - Pages: 62-71

    • DOI

      10.5220/0007567400620071

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Emergence of divisional cooperation with negotiation and re-learning and evaluation of flexibility in continuous cooperative patrol problem2018

    • Author(s)
      Sugiyama Ayumi、Sea Vourchteang、Sugawara Toshiharu
    • Journal Title

      Knowledge and Information Systems

      Volume: 速報版のため未定 Issue: 3 Pages: 1587-1609

    • DOI

      10.1007/s10115-018-1285-8

    • Related Report
      2019 Research-status Report 2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Learning Strategic Group Formation for Coordinated Behavior in Adversarial Multi-Agent with Double DQN2018

    • Author(s)
      Diallo Elhadji Amadou Oury、Sugawara Toshiharu
    • Journal Title

      Springer Lecture Note in Artificial Intelligence

      Volume: 11224 Pages: 458-466

    • DOI

      10.1007/978-3-030-03098-8_30

    • ISBN
      9783030030971, 9783030030988
    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Deep Q-Networkを用いたマルチエージェントの分散協調探索問題における分業の創発2018

    • Author(s)
      宮下裕貴, 菅原俊治
    • Journal Title

      エージェント合同シンポジウム予稿集

      Volume: -

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] 通信制限のある複数エージェントの協調連続巡回問題における担当領域の重複とその抑制手法の提案2018

    • Author(s)
      吉村 祐, 杉山 歩未, 菅原 俊治
    • Journal Title

      情報処理学会論文誌トランザクション:数理モデル化と応用

      Volume: 11 Pages: 50-62

    • NAID

      170000149657

    • Related Report
      2018 Research-status Report 2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] マルチエージェント継続協調巡回問題における位置情報を利用したふるまいの類似度推定2018

    • Author(s)
      杉山歩未, Vourchteang Sea, 菅原 俊治
    • Journal Title

      人工知能と知識処理研究会技術研究報告

      Volume: 118 Pages: 23-28

    • Related Report
      2018 Research-status Report
  • [Journal Article] Frequency-Based Multi-agent Patrolling Model and Its Area Partitioning Solution Method for Balanced Workload2018

    • Author(s)
      Sea Vourchteang、Sugiyama Ayumi、Sugawara Toshiharu
    • Journal Title

      Springer Lecture Note in Computer Science

      Volume: 10848 Pages: 530-545

    • DOI

      10.1007/978-3-319-93031-2_38

    • ISBN
      9783319930305, 9783319930312
    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Frequency-based Multi-agent Patrolling Model and Its Area Partitioning Solution Method for Balanced Workload2018

    • Author(s)
      Vourchteang Sea, Sugiyama Ayumi, and Sugawara Toshiharu
    • Journal Title

      Proceedings of the 15th International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research

      Volume: 印刷中

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] 通信遅延がある環境における効率的なチーム編成手法の提案2017

    • Author(s)
      舟戸崚也, 早野真史, 飯嶋直輝, 菅原俊治
    • Journal Title

      知能システム研究会予稿集 (ICS)

      Volume: ICS-190 Pages: 1-7

    • Related Report
      2017 Research-status Report
  • [Journal Article] Learning to Coordinate with Deep Reinforcement Learning in Doubles Pong Game2017

    • Author(s)
      Elhadji Diallo, Ayumi Sugiyama and Toshiharu Sugawara
    • Journal Title

      Proceedings of 16th IEEE International Conference on Machine Learning and Applications

      Volume: IEEE Xplore Pages: 14-19

    • DOI

      10.1109/icmla.2017.0-184

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Asynchronous Agent Teams for Collaborative Tasks Based on Bottom-Up Alliance Formation and Adaptive Behavioral Strategies2017

    • Author(s)
      Masashi Hayano, Naoki Iijima and Toshiharu Sugawara
    • Journal Title

      Proceedings of The 15th IEEE International Conference on Dependable, Autonomic and Secure Computing

      Volume: IEEE Xplore Pages: 589-596

    • DOI

      10.1109/dasc-picom-datacom-cyberscitec.2017.105

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] 領域分割を用いたマルチエージェントの巡回清掃問題における重複抑制手法の提案2017

    • Author(s)
      吉村 祐, 杉山歩未, 菅原俊治
    • Journal Title

      人工知能と知識処理研究会技術研究報告

      Volume: 117 Pages: 13-18

    • Related Report
      2017 Research-status Report
  • [Journal Article] 継続協調巡回問題における分業創発と環境変化への追従性2017

    • Author(s)
      杉山歩未, Vourchteang Sea, 早野真史, 菅原俊治
    • Journal Title

      エージェント合同シンポジウム予稿集

      Volume: -

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Improvement of Robustness to Environmental Changes by Autonomous Divisional Cooperation in Multi-Agent Cooperative Patrol Problem2017

    • Author(s)
      Ayumi Sugiyama and Toshiharu Sugawara
    • Journal Title

      15th International Conference on Practical Applications of Agents and Multi-Agent Systems

      Volume: LNCS 10349 Pages: 259-271

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Presentation] 時系列予測ネットワークと深層強化学習を利用した微視的道路交通における自動運転方策の提案2022

    • Author(s)
      諏訪 凌太, 菅原 俊治
    • Organizer
      人工知能学会データ指向構成マイニングとシミュレーション研究報告
    • Related Report
      2021 Annual Research Report
  • [Presentation] DA3:マルチエージェント深層強化学習における協調行動の解釈性確立と対ノイズ性能の検証2022

    • Author(s)
      元川善就, 菅原俊治
    • Organizer
      知能システム研究会 (情報処理学会)
    • Related Report
      2021 Annual Research Report
  • [Presentation] マルチエージェント搬送問題のためのグラフ理論を活用したデッドロック回避手法の提案2022

    • Author(s)
      山内智貴, 宮下裕貴, 菅原俊治
    • Organizer
      知能システム研究会 (情報処理学会)
    • Related Report
      2021 Annual Research Report
  • [Presentation] 不均一環境におけるマルチエージェント搬送問題のための 効率的な経路・動作計画アルゴリズムの提案2021

    • Author(s)
      山内智貴, 宮下裕貴, 菅原俊治
    • Organizer
      知能システム研究会 (情報処理学会)
    • Related Report
      2021 Annual Research Report
  • [Presentation] マルチエージェント搬送のための環境制約を緩めたPIBT手法の拡張2021

    • Author(s)
      藤谷雪北, 山内 智貴, 宮下 裕貴, 菅原 俊治
    • Organizer
      知能システム研究会 (情報処理学会)
    • Related Report
      2021 Annual Research Report
  • [Presentation] マルチエージェント深層強化学習を用いたライドシェアのサービスエリア制御とスケーラビリティの確保2020

    • Author(s)
      吉田 直樹, 野田 五十樹, 菅原 俊治
    • Organizer
      知能システム研究会、情報処理学会
    • Related Report
      2020 Research-status Report
  • [Presentation] マルチエージェント協調巡回問題における交渉を通じた エージェントの計画停止の自律的な学習手法の提案2020

    • Author(s)
      立木 創太, 菅原 俊治
    • Organizer
      第34回人工知能学会全国大会
    • Related Report
      2020 Research-status Report
  • [Presentation] 分散/集中制御によるマルチエージェント深層強化学習を用いた ライドシェアのサービスエリア制御の比較2020

    • Author(s)
      吉田 直樹, 野田 五十樹, 菅原 俊治
    • Organizer
      第34回人工知能学会全国大会
    • Related Report
      2020 Research-status Report
  • [Presentation] 山内 智貴, 宮下 裕貴, 菅原 俊治2020

    • Author(s)
      山内 智貴, 宮下 裕貴, 菅原 俊治
    • Organizer
      第34回人工知能学会全国大会
    • Related Report
      2020 Research-status Report
  • [Presentation] Coordination and cooperation for continuous and sustainable operations2019

    • Author(s)
      Toshiharu Sugawara
    • Organizer
      18th International Conference on Practical Applications of Agents and Multi-Agent Systems
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 限界効用逓減の法則を考慮したSNSモデルによるレシピ共有SNSの再現のためのパラメータ推定2018

    • Author(s)
      三浦 雄太郎, 鳥海不二夫, 菅原俊治
    • Organizer
      第15回ネットワーク生態学シンポジウム
    • Related Report
      2018 Research-status Report
  • [Presentation] マルチエージェント探索問題における粗視化とフィルタリングの統合手法による領域分割について2018

    • Author(s)
      湯徳 尊久, 杉山 歩未, 菅原 俊治
    • Organizer
      情報処理学会全国大会
    • Related Report
      2017 Research-status Report
  • [Presentation] マルチエージェント継続協調巡回における分業の創発と変化に対する柔軟性の評価2017

    • Author(s)
      杉山 歩未, Sea Vourchteang, 早野 真史, 菅原 俊治
    • Organizer
      日本ソフトウェア科学会全国大会予稿集
    • Related Report
      2017 Research-status Report

URL: 

Published: 2017-07-21   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi