Project/Area Number |
17KT0082
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Multi-year Fund |
Section | 特設分野 |
Research Field |
The Information Society and Trust
|
Research Institution | Nagoya University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
原 隆浩 大阪大学, 情報科学研究科, 教授 (20294043)
重野 寛 慶應義塾大学, 理工学部(矢上), 教授 (30306881)
白石 陽 公立はこだて未来大学, システム情報科学部, 教授 (90396797)
|
Project Period (FY) |
2017-07-18 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥18,590,000 (Direct Cost: ¥14,300,000、Indirect Cost: ¥4,290,000)
Fiscal Year 2019: ¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2018: ¥6,500,000 (Direct Cost: ¥5,000,000、Indirect Cost: ¥1,500,000)
Fiscal Year 2017: ¥5,590,000 (Direct Cost: ¥4,300,000、Indirect Cost: ¥1,290,000)
|
Keywords | 情報流 / 経済モデル / トラストモデル / Synerex / Synergic Exchange / Synergic Exchange |
Outline of Final Research Achievements |
In this study, we have investigated a method for exchanging data acquired between different organizations in a real-world data usage service where large amounts of information are obtained from various devices and sensors in the real world. We have constructed a "trust economy model" as a prototype of an infrastructure system for this purpose. We have developed an architecture that is based on neighborhood data for advanced stream data results on monitoring. We also proposed a trust model for selective destruction attacks in MANETs. In addition, for real-world data, we proposed the use of route bus congestion information as the underlying technology. In this study, a method for collecting congestion information on bus routes was investigated.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、実世界からの情報ストリームを「情報流」と捉えてネットワーク上で処理を行う枠組みの上に「トラスト経済モデル」を構築した。IoT の導入で最も重要な点の一つは費用対効果であり、トラスト経済モデルを用いれば、どの程度のコストをかけるとどの程度の効果が得られるかをトラスト上の計算により推定可能になる。従来は組織対組織で信頼関係を築いた後にデータ交換を行ってきたが、交渉費用の事前推定は困難であった。トラスト経済モデルを用いれば、実際にデータ交換を行う前に、トラストを通じてデータの品質や信頼性、コストをある程度まで評価することが可能になる。
|