• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Holonomic deformation and nonlinear integrable systems

Research Project

Project/Area Number 18204012
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionThe University of Tokyo

Principal Investigator

OKAMOTO Kazuo  The University of Tokyo, 大学院・数理科学研究科, 教授 (40011720)

Co-Investigator(Kenkyū-buntansha) KANIE Yukihiro  三重大学, 教育学部, 教授 (10093121)
SAKAI Hidetaka  東京大学, 大学院・数理科学研究科, 准教授 (50323465)
OHYAMA Yousuke  大阪大学, 大学院・情報科学研究科, 准教授 (10221839)
Project Period (FY) 2006 – 2009
Project Status Completed (Fiscal Year 2009)
Budget Amount *help
¥45,760,000 (Direct Cost: ¥35,200,000、Indirect Cost: ¥10,560,000)
Fiscal Year 2009: ¥10,920,000 (Direct Cost: ¥8,400,000、Indirect Cost: ¥2,520,000)
Fiscal Year 2008: ¥11,180,000 (Direct Cost: ¥8,600,000、Indirect Cost: ¥2,580,000)
Fiscal Year 2007: ¥12,480,000 (Direct Cost: ¥9,600,000、Indirect Cost: ¥2,880,000)
Fiscal Year 2006: ¥11,180,000 (Direct Cost: ¥8,600,000、Indirect Cost: ¥2,580,000)
Keywords可積分系 / 関数方程式論 / 関数論 / ホロノミック変形 / 非線形可積分系 / パンルヴェ方程式 / ガルニエ系 / 離散系 / q-差分系 / 非線型可積分系
Research Abstract

The aim of present project is to study the theory of holonomic deformation and that of nonlinear integrable systems associated with holonomic deformation. The main subjects of investigation are the Painleve equations and the Garnier systems, which are a generalization in the case of several variables of the Painleve equations. At the beginning of researches of the present project, we have completed studies on Painleve equations by considering the Hamiltonian structure of the two types of the degenerated Painleve equations. The head investigator has published a book, entitled as "Painleve equations", written in Japanese, concerning to the theory of the Painleve equations and the Garnier systems from a viewpoint of holonomic deformation. This contains a historical and mathematical meaning of these integrable systems, and recent development of studies on them. The second aim of the project is to support younger researchers, not only Japanese ones but also foreigners, on theory of integrable systems ; many of them have attended the three international conferences, mainly supported by the project, where they have read their own results.

Report

(6 results)
  • 2009 Annual Research Report   Final Research Report ( PDF )
  • 2008 Annual Research Report   Self-evaluation Report ( PDF )
  • 2007 Annual Research Report
  • 2006 Annual Research Report
  • Research Products

    (25 results)

All 2010 2009 2008 2007 2006 Other

All Journal Article (12 results) (of which Peer Reviewed: 9 results) Presentation (8 results) Book (1 results) Remarks (4 results)

  • [Journal Article] Monodromy evolving deformations and Halphen's equation, CRM Proc2009

    • Author(s)
      Y. Ohyama
    • Journal Title

      Lecture Notes 47

      Pages: 343-348

    • Related Report
      2009 Final Research Report
    • Peer Reviewed
  • [Journal Article] Problem : discrete Painleve equations and their Lax forms2007

    • Author(s)
      H. Sakai
    • Journal Title

      RIMS KokyAroku Bessatsu B2

      Pages: 195-208

    • Related Report
      2009 Final Research Report
    • Peer Reviewed
  • [Journal Article] Fifth Painleve transcendents which are analytic at the origin2007

    • Author(s)
      K. Kaneko, Y. Ohyama
    • Journal Title

      Funkcial. Ekvac 50

      Pages: 187-212

    • NAID

      130000140686

    • Related Report
      2009 Final Research Report
    • Peer Reviewed
  • [Journal Article] Rational transformations of confluent hypergeometric equations and algebraic solutions of the Painleve equations : P1 to P62007

    • Author(s)
      Y. Ohyama
    • Journal Title

      RIMS KokyAroku Bessatsu B2

      Pages: 137-150

    • Related Report
      2009 Final Research Report
    • Peer Reviewed
  • [Journal Article] Fifth Painleve transcendents which are analytic at the origin2007

    • Author(s)
      OHYAMA Yousuke, 共著
    • Journal Title

      Funkcial. Ekvac. 50

      Pages: 187-212

    • NAID

      130000140686

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Quadratic transformations of the sixth Painleve equation-with application to algebraic solitions2007

    • Author(s)
      KITAEV Alexander, 共著
    • Journal Title

      Math. Nachr. 280

      Pages: 1834-1855

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Studies on the Painleve equations V, third Painleve equations of the type P_III (D_7) and P_III (D-8)2006

    • Author(s)
      Y. Ohyama, H. Kawamuko, H. Sakai, K. Okamoto
    • Journal Title

      J.Math.Sci.Univ.Tokyo 13

      Pages: 145-204

    • Related Report
      2009 Final Research Report
    • Peer Reviewed
  • [Journal Article] Lax form of the q- Painleve equation associated with the A^(1)_2 surface2006

    • Author(s)
      H. Sakai
    • Journal Title

      J.Phys. A39

      Pages: 12203-12210

    • Related Report
      2009 Final Research Report
    • Peer Reviewed
  • [Journal Article] Studies on the Painleve equations V, third Painleve equations of the type P_III(D_7) and P_ III(D_8)2006

    • Author(s)
      Y. Ohyama, H. Kawamuko, H. Sakai and K. Okamoto
    • Journal Title

      J. Math. Sci. Univ. Tokyo 13

      Pages: 145-204

    • Related Report
      2008 Self-evaluation Report
    • Peer Reviewed
  • [Journal Article] Studies on the Painleve equations, V2006

    • Author(s)
      OKAMOTO Kazuo (共著)
    • Journal Title

      J. Math. Sci. Univ. Tokyo 13

      Pages: 145-204

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Lax form of the q-Painleve equation associated with the A^<(1)>_2 surface2006

    • Author(s)
      SAKAI Hidetaka (単著)
    • Journal Title

      J. Phys. A 39

      Pages: 12203-12210

    • Related Report
      2006 Annual Research Report
  • [Journal Article] A coalescent diagram of the Painleve equations from the viewpoint of isomonodromic deformations2006

    • Author(s)
      OHYAMA Yousuke (共著)
    • Journal Title

      J. Phys. A 39

      Pages: 12129-12151

    • Related Report
      2006 Annual Research Report
  • [Presentation] ガルニエ系の数理2010

    • Author(s)
      岡本和夫(OKAMOTO Kazuo)
    • Organizer
      数理科学研究科談話会
    • Place of Presentation
      東京大学
    • Year and Date
      2010-03-12
    • Related Report
      2009 Annual Research Report
  • [Presentation] Journees franco-japonaises en1' honneur de Kazuo Okamoto autour des equations de Painleve2008

    • Author(s)
      K. Okamoto
    • Organizer
      The differential equations satisfied by the τ-functions of the degenerate Garnier systems, 国際研究集会
    • URL

      http://www-irma.u-strasbg.fr/annexes/conferences/okamoto/

    • Place of Presentation
      ストラスブールレ大学, フランス
    • Year and Date
      2008-11-11
    • Related Report
      2009 Final Research Report
  • [Presentation] The differential equations satisfied by the τ-functions of the degenerate Garnier systems2008

    • Author(s)
      K. Okamoto
    • Organizer
      国際研究集会「 Journees franco-japonaises en l'honneur de Kazuo Okamoto autour des equations de Painleve」
    • URL

      http://www-irma.u-strasbg.fr/article743.htmlvar_recherche=okamoto

    • Place of Presentation
      ストラスブール大学,フランス
    • Year and Date
      2008-11-11
    • Related Report
      2008 Self-evaluation Report
  • [Presentation] The differential equations satisfied by the tau-functions of the degenerate Garnier systems2008

    • Author(s)
      岡本和夫(OKAMOTOKazuo)
    • Organizer
      Journees franco-japonaises en l'honneur de Kazuo Okamoto autour des equations de Pa inleve
    • Place of Presentation
      フランス・ストラスブール大学
    • Year and Date
      2008-11-11
    • Related Report
      2008 Annual Research Report
  • [Presentation] From Painleve to Okamoto2008

    • Author(s)
      K. Okamoto
    • Organizer
      From Strasbourg to Tokyo, 国際研究集会
    • URL

      http://www2.math.kyushu-u.ac.jp/~tudateru/okamoto60/

    • Place of Presentation
      東京大学
    • Year and Date
      2008-06-11
    • Related Report
      2009 Final Research Report
  • [Presentation] From Strasbourg to Tokyo2008

    • Author(s)
      K. Okamoto
    • Organizer
      国際研究集会「From Painleve to Okamoto」
    • URL

      http://www2.math.kyushu-u.ac.jp/~tudateru/okamoto60/

    • Place of Presentation
      東京大学
    • Year and Date
      2008-06-11
    • Related Report
      2008 Self-evaluation Report
  • [Presentation] From Strasbourg to Tokyo2008

    • Author(s)
      岡本和夫(OKAMOTO Kazuo)
    • Organizer
      From Painleve to Okamoto
    • Place of Presentation
      東京大学
    • Year and Date
      2008-06-11
    • Related Report
      2008 Annual Research Report
  • [Presentation] Introduction to the Painleve equations2006

    • Author(s)
      K. Okamoto
    • Organizer
      (4回講演義) Workshop onPainleve equations and monodromy problems, ニュートン研究所
    • URL

      http://www.newton.ac.uk/webseminars/pg+ws/2006/pem/pemw01/

    • Place of Presentation
      ケンブリッジ, イギリス
    • Related Report
      2009 Final Research Report 2008 Self-evaluation Report
  • [Book] パンルヴェ方程式2009

    • Author(s)
      岡本和夫
    • Total Pages
      300
    • Publisher
      岩波書店
    • Related Report
      2009 Final Research Report 2008 Annual Research Report 2008 Self-evaluation Report
  • [Remarks]

    • URL

      http://poisson.ms.u-tokyo.ac.jp/~okamoto/

    • Related Report
      2009 Final Research Report
  • [Remarks]

    • URL

      http://poisson.ms.u-tokyo.ac.jp/~okamoto/

    • Related Report
      2009 Annual Research Report
  • [Remarks]

    • URL

      http://www2.math.kyushu-u.ac.jp/~tudateru/okamoto60/

    • Related Report
      2008 Annual Research Report
  • [Remarks]

    • URL

      http://www-irma.u-strasbg.fr/article743html?var-recherche=okamoto

    • Related Report
      2008 Annual Research Report

URL: 

Published: 2006-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi