• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on arithmetic invariants attached to automorphic forms

Research Project

Project/Area Number 18540057
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionKyoto Sangyo University

Principal Investigator

MURASE Atsushi  Kyoto Sangyo University, Faculty of Science, Professor (40157772)

Co-Investigator(Kenkyū-buntansha) SUGANO Takashi  Kanazawa Unviersity, Institute of Natural Science, Professor (30183841)
YAMAGAMI Atsushi  Kyoto Sangyo University, Faculty of Science, Associate Professor (00440876)
Project Period (FY) 2006 – 2007
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥3,910,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥510,000)
Fiscal Year 2007: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2006: ¥1,700,000 (Direct Cost: ¥1,700,000)
Keywordsautomorphic form / Fourier coefficients / automorphic L-function / theta lift / period / algebraic group
Research Abstract

(1) For an elliptic cusp form f on a Hecke congruence subgroup and a Hecke character W of an imaginary quadratic field K, I showed that the square of a xertain CM-period attached to (f,W) is expressed in terms of the central value of the L-function attached to (f,W), when the level off is square free.
(2) We proposed a conjecture concerning a relation between the Fourier-Jacobi coefficients of a cusp form F on U(2,1) and the central values of automorphic L-functions attaced to F. The conjecture are proved when F is a holomorphic Eisenstein series or a unitary Kudla lift. The results in (1) are essentially used in the proof of the latter result. This is a joint work with Takashi Sugano.
(3) Let f and f' be automorphic forms on GL(2) and the multiplicative group of a quaternion algebra B, respectively. Let L(f,f') be the theta lift on Sp(1,1) constructed from (f,f'). We showed that L(f,f') is a Hecke eigenform if so are f and f'. We also showed that the Fourier coefficients of L(f,f') are expressed in terms of CM-periods of f and f'. This is a joint work with Hiro-aki Narita.
(4) A p-adic infinite family of Hilbert modular forms parameterized by an Affinoid Hecke variety is constructed. When the degree of the base field F is even, a p-adically analytic infinite family of Hilbert Hecke eigenforms of a fixed finite slope parameterized by weights is constructed. This is a work of Atsushi Yamagami.

Report

(3 results)
  • 2007 Annual Research Report   Final Research Report Summary
  • 2006 Annual Research Report
  • Research Products

    (13 results)

All 2008 2007

All Journal Article (10 results) (of which Peer Reviewed: 5 results) Presentation (3 results)

  • [Journal Article] Commutation relations of Hecke operators for Arakawa lifting2008

    • Author(s)
      A.Murase
    • Journal Title

      Tohoku Mathematical Journal 60

      Pages: 227-251

    • NAID

      110006691409

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Commutation relations of Hecke operators for Arakawa lift2008

    • Author(s)
      A. Murase
    • Journal Title

      Tohoku Math. Journal 60

      Pages: 227-251

    • NAID

      110006691409

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Commutation relations of Hecke operators for Arakawa lifting2008

    • Author(s)
      A. Murase
    • Journal Title

      Tohoku Mathematical Journal 60

      Pages: 227-251

    • NAID

      110006691409

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the Fourier-Jacobi expansion of the unitary Kudla lift2007

    • Author(s)
      A.Murase
    • Journal Title

      Compositio Mathematica 143

      Pages: 1-46

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] On p-adic families of Hilbert cusp forms of finite slope2007

    • Author(s)
      A.Yamagami
    • Journal Title

      Journal of Number Theory 123

      Pages: 363-387

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] On the Fourier-Jacobi expansion of the unitary Kudla lift2007

    • Author(s)
      A. Murase
    • Journal Title

      Compositio Mathematica 143

      Pages: 1-46

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Annual Research Report 2007 Final Research Report Summary
  • [Journal Article] On p-adic families of Hilbert cusp forms of finite slope2007

    • Author(s)
      A. Yamagami
    • Journal Title

      J. Number Theory 123

      Pages: 363-387

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] On p-adic families of Hilbert cusp forms of finite slope2007

    • Author(s)
      A. Yamagami
    • Journal Title

      Journal of Number Theory 123

      Pages: 363-387

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the fourier-jacobi expansion of the unitary Kudla lift2007

    • Author(s)
      A.Murase, T.Sugano
    • Journal Title

      Compositio Math. 143

      Pages: 1-46

    • Related Report
      2006 Annual Research Report
  • [Journal Article] On p-adic families of Hilbert cups forms of finite slope2007

    • Author(s)
      A.Yamagami
    • Journal Title

      Journal of Number Theory 123

      Pages: 363-387

    • Related Report
      2006 Annual Research Report
  • [Presentation] Fourier-Jacobi expansion of automorphic forms on U(2,1)2008

    • Author(s)
      A.Murase
    • Organizer
      Second Japanese-German Number Theory Workshop
    • Place of Presentation
      Max-Planck-Institut Bonn
    • Year and Date
      2008-02-19
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] Fourier-Jacobi expansion of automorphic forms on U(2, 1)2008

    • Author(s)
      A. Murase
    • Organizer
      Second Japanese-German Number Theory Workshop
    • Place of Presentation
      Max-Planck-Institut Bonn
    • Year and Date
      2008-02-19
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] Fourier-Jacobi expansion of automorphic forms on U(2,1)2008

    • Author(s)
      A. Murase
    • Organizer
      Second Japanese-German Number Theory Workshop
    • Place of Presentation
      Max-Planck-Insitut Bonn
    • Year and Date
      2008-02-19
    • Related Report
      2007 Annual Research Report

URL: 

Published: 2006-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi