Hamiltonian structure in the pattern selection problems of dissipative systems
Project/Area Number |
18540120
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
General mathematics (including Probability theory/Statistical mathematics)
|
Research Institution | Kobe University |
Principal Investigator |
KUWAMURA Masataka Kobe University, 人間発達環境学研究科, 准教授 (30270333)
|
Co-Investigator(Kenkyū-buntansha) |
EI Shin-ichiro 九州大学, 数理学研究院, 教授 (30201362)
OGAWA Toshiyuki 大阪大学, 基礎工学研究科, 准教授 (80211811)
|
Project Period (FY) |
2006 – 2009
|
Project Status |
Completed (Fiscal Year 2009)
|
Budget Amount *help |
¥3,630,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥630,000)
Fiscal Year 2009: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2008: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2007: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2006: ¥900,000 (Direct Cost: ¥900,000)
|
Keywords | 散逸系 / ハミルトン系 / prey-predator / カオス / mixed-mode振動 / ハミルトン構造 / 波数選択 / チューリングパターン / 周期解 / 時間遅れ / パターン |
Research Abstract |
We studied the gradient/skew-gradient structure that enables us to apply the Hamiltonian formalism for studying the stability of stationary solutions in reaction-diffusion systems in various pattern formation problems. Moreover, we studied the stabilizing effect of dormancy of predators on the population dynamics of prey-predator systems.
|
Report
(6 results)
Research Products
(29 results)