• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A Study of Embeddings of Normed Spaces into Numerical Radius Operator Spaces

Research Project

Project/Area Number 18540159
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionGunma University

Principal Investigator

ITOH Takashi  Gunma University, Education, Professor (40193495)

Co-Investigator(Kenkyū-buntansha) NAGISA Masaru  Chiba University, Science, Professor (50189172)
Project Period (FY) 2006 – 2007
Project Status Completed (Fiscal Year 2007)
Budget Amount *help
¥1,020,000 (Direct Cost: ¥900,000、Indirect Cost: ¥120,000)
Fiscal Year 2007: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2006: ¥500,000 (Direct Cost: ¥500,000)
KeywordsOperator Space / Numerical Radius / Operator Algebra / Onerator Norm / 数域半径作用素空間
Research Abstract

In 1988, the notion of operator spaces introduced by Z.J.Ruan shed light on a new point of view for studying not only on operator algebra but also on functional analysis. We can introduce an operator space structure into the dual space of operator spaces and all of completely positive maps on operator spaces. It is not hard to transfer the arguments in normed spaces into those in operator spaces. As the catch phrase, it is said that " The operator space theory is a quantization of the functional analysis".
I and M.NGAISA proved the existence of various numerical radius operator spaces behind operator spaces. Given an operator space, we can find the various numerical radius norms which corresponds to the original norm satisfying an identity. We might say that " The numerical radius operator space theory is a second quantization of the functional analysis".
Moreover we found an-preserving representation of the involutive normed space into a concrete numerical radius operator space, while the Ruan's representation did not preserve the involution at all. As the consequence, we found the simple proof of Anto type theorem for numerical radius of operators, which describe the numerical radius by using the factorization of bounded operators on Hilbert spaces.

Report

(3 results)
  • 2007 Annual Research Report   Final Research Report Summary
  • 2006 Annual Research Report
  • Research Products

    (10 results)

All 2007 2006

All Journal Article (6 results) (of which Peer Reviewed: 2 results) Presentation (2 results) Book (2 results)

  • [Journal Article] π -Calculations of π from Archimedes until now2007

    • Author(s)
      O. TAKENOUCHI and T. ITOH
    • Journal Title

      Kyoritsu Syuppan

      Pages: 178-178

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Numerical radius Haagerup norm and square Factorization through Hilbert spaces2006

    • Author(s)
      T. ITOH and M. NAGISA
    • Journal Title

      J. Math. Soc. Japan 52(2)

      Pages: 363-377

    • NAID

      10018381245

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Numerical Radius-Norms on Operator Spaces2006

    • Author(s)
      T. ITOH and M. NAGISA
    • Journal Title

      J. London Math. Soc. 74(2)

      Pages: 154-166

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
    • Peer Reviewed
  • [Journal Article] Numerical radius Haagerup norm and square factorization through Hilbert spaces2006

    • Author(s)
      T. ITOH and M. NAGISA
    • Journal Title

      J. Math. Soc. Japan Vol. 52

      Pages: 363-377

    • NAID

      10018381245

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Numerical radius norms on operator spaces2006

    • Author(s)
      T. ITOH and M. NAGISA
    • Journal Title

      J. London Math. Soc Vol. 74

      Pages: 154-166

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Journal Article] Numerical Radius Norms on Operator Spaces2006

    • Author(s)
      T.Itoh, M.Nagisa
    • Journal Title

      J. London Math. Soc. 74(2)

      Pages: 154-166

    • Related Report
      2006 Annual Research Report
  • [Presentation] Effros-Ruan予想について2007

    • Author(s)
      T. ITOH
    • Organizer
      東京作用素環セミナー
    • Place of Presentation
      SCS
    • Year and Date
      2007-07-20
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Presentation] On Effros-Ruan Conjecture2007

    • Author(s)
      T. ITOH
    • Organizer
      Tokyo Operator Algebra Seminar
    • Place of Presentation
      at SCS
    • Year and Date
      2007-07-20
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Book] π-πの計算 アルキメデスから現代まで2007

    • Author(s)
      竹之内脩 伊藤隆
    • Publisher
      共立出版株式会社
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2007 Final Research Report Summary
  • [Book] π -πの計算 アルキメデスから現代まで-2007

    • Author(s)
      伊藤 隆, 竹之内 脩
    • Total Pages
      178
    • Publisher
      共立出版株式会社
    • Related Report
      2007 Annual Research Report

URL: 

Published: 2006-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi