• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Iwasawa conjecture for a hyperbolic threefold and its application to number theory

Research Project

Project/Area Number 18540203
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionChiba University

Principal Investigator

SUGIYAMA Kennichi  Chiba University, 大学院・理学研究科, 教授 (90206441)

Co-Investigator(Kenkyū-buntansha) 久我 健一  千葉大学, 大学院・理学研究科, 教授 (30186374)
高木 亮一  千葉大学, 大学院・理学研究科, 教授 (00015562)
Co-Investigator(Renkei-kenkyūsha) KUGA Kennichi  千葉大学, 大学院・理学研究科, 教授 (30186374)
TAKAGI Ryouichi  千葉大学, 大学院・理学研究科, 名誉教授 (00015562)
Project Period (FY) 2006 – 2009
Project Status Completed (Fiscal Year 2009)
Budget Amount *help
¥4,090,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥690,000)
Fiscal Year 2009: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2008: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2007: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2006: ¥1,100,000 (Direct Cost: ¥1,100,000)
Keywords3次元双曲多様体 / Ruelle L-関数 / 特殊値 / 岩澤理論 / Lichtenbaum予想 / 双曲幾何学 / L-関数 / 岩澤予想 / 代数的K-群 / Selberg跡公式 / Regulator / 幾何学 / 代数的K群 / レギュレター / 多様体のゼータ関数 / Alexander不変量 / Ruelle L関数とその特殊値 / Milnor-Reidemeister普遍量 / Selbergの跡公式
Research Abstract

We have shown a geometric analogy of Iwasawa conjecture, which is one of deep theorem in number theory, holds for a cuspidal unitary local system on a hyperbolic threefold of finite volume. We have also proved a theorem corresponding to Lichtenbaum conjecture.

Report

(6 results)
  • 2009 Annual Research Report   Final Research Report ( PDF )
  • 2008 Annual Research Report   Self-evaluation Report ( PDF )
  • 2007 Annual Research Report
  • 2006 Annual Research Report
  • Research Products

    (28 results)

All 2010 2009 2008 2007 2006

All Journal Article (15 results) (of which Peer Reviewed: 15 results) Presentation (13 results)

  • [Journal Article] On geometric analogues of the Birch and Swinnerton-Dyer conjecture for low dimensional hyperbolic manifolds2009

    • Author(s)
      K. Sugiyama
    • Journal Title

      Contemporary 84

      Pages: 267-286

    • Related Report
      2009 Final Research Report
    • Peer Reviewed
  • [Journal Article] On geometric analogues of the Iwasawa main conjecture for a hyperbolic threefold2009

    • Journal Title

      Adv.Stud.in Pure Math. 55

      Pages: 117-135

    • Related Report
      2009 Final Research Report
    • Peer Reviewed
  • [Journal Article] On geometric analogues of the Iwasawa conjecture for a hyperbolic threefold2009

    • Author(s)
      K.Sugiyama
    • Journal Title

      Adv.Stud.in Pure Math. 55

      Pages: 117-135

    • Related Report
      2009 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On geometric analogues oh the Birch and Swinnerton-Dyer conjecture for low dimensional hyperbolic manifolds2009

    • Author(s)
      K.Sugiyama
    • Journal Title

      Contemporary Mathematics 484

      Pages: 267-286

    • Related Report
      2009 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On geometric analogues of the Birch and Swinnerton-Dyer conjecture for low dimensional hyperbolic manifolds2009

    • Author(s)
      K. Sugiyama
    • Journal Title

      Contemporary Mathematics 484

      Pages: 267-286

    • Related Report
      2008 Annual Research Report
    • Peer Reviewed
  • [Journal Article] An analog of the Iwasawa conjecture for a compact hyperbolic threefold2007

    • Author(s)
      K. Sugiyama
    • Journal Title

      J.Reine.Angew.Math. 613,No.1-2

      Pages: 35-50

    • Related Report
      2009 Final Research Report
    • Peer Reviewed
  • [Journal Article] On geometric Iwasawa conjecture from a viewpoint of the arithmetic topology2007

    • Author(s)
      K. Sugiyama
    • Journal Title

      RIMS Kokyuroku Bessatsu 4

      Pages: 235-247

    • Related Report
      2009 Final Research Report
    • Peer Reviewed
  • [Journal Article] An analog of the Iwasawa conjecture for a compact hyperbolic threefold2007

    • Author(s)
      K.Sugiyama
    • Journal Title

      J. Reine. Angew. Math 613

      Pages: 35-50

    • Related Report
      2008 Self-evaluation Report
    • Peer Reviewed
  • [Journal Article] The geometric Iwasawa conjecture from a viewpoint of the arithmetic topology2007

    • Author(s)
      K.Sugiyama
    • Journal Title

      RIMS Kokyuroku Bessatu 4

      Pages: 235-247

    • Related Report
      2008 Self-evaluation Report
    • Peer Reviewed
  • [Journal Article] An analog of the Iwasawa conjecture for a compact hyperbolic threefold2007

    • Author(s)
      K.Sugiyama
    • Journal Title

      J.Reille.Angew.Mat 613

      Pages: 35-50

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] The geometric Iwasawa conjecture from a Viewpoint of the arithmetic to pology2007

    • Author(s)
      K.Sugiyama
    • Journal Title

      RIMS Kokyuroku Bessatsu 4

      Pages: 235-247

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the Hodge conjecture and the Tate conjecture for the Hilbert schemes of an abelian surface2006

    • Author(s)
      K. Sugiyama
    • Journal Title

      Math.Nach. 279,N0.1-2

      Pages: 217-231

    • Related Report
      2009 Final Research Report
    • Peer Reviewed
  • [Journal Article] Some remarks on the Brylinski-Radon and the Fourier transforms2006

    • Author(s)
      K. Sugiyama
    • Journal Title

      J.Funct.Anal. 235

      Pages: 543-558

    • Related Report
      2009 Final Research Report
    • Peer Reviewed
  • [Journal Article] On the Hodge conjecture and the Tate conjecture for the Hilbert schemes of an abelian surface2006

    • Author(s)
      K.Sugiyama
    • Journal Title

      Math. Nach. 279(No.1-2)

      Pages: 217-231

    • Related Report
      2008 Self-evaluation Report
    • Peer Reviewed
  • [Journal Article] Some remarks on the Brylinski-Radon and the Fourier ransforms2006

    • Author(s)
      K.Sugiyama
    • Journal Title

      Jour. Funct. Anal. 235

      Pages: 543-558

    • Related Report
      2008 Self-evaluation Report
    • Peer Reviewed
  • [Presentation] On an analogy between number theory and hyperbolic geometry2010

    • Author(s)
      K. Sugiyama
    • Organizer
      Low dimensional topology and number theory II
    • Place of Presentation
      東京大学
    • Related Report
      2009 Annual Research Report 2009 Final Research Report
  • [Presentation] On a geometric analog of Iwasawa conjecture2009

    • Author(s)
      K. Sugiyama
    • Organizer
      福岡ソフトリサーチパークセンター
    • Related Report
      2009 Final Research Report
  • [Presentation] An analogue of Lichtenbaum conjecture for a hyperbolic threefold2009

    • Author(s)
      K. Sugiyama
    • Organizer
      Workshop on Arithmetic Geometry at Tambara
    • Place of Presentation
      東京大学玉原国際セミナーハウス
    • Related Report
      2009 Final Research Report
  • [Presentation] On special values of Ruelle L-function and a regulator2008

    • Author(s)
      K. Sugiyama
    • Organizer
      Workshop "L-functions in arithmetic and geometry"
    • Place of Presentation
      SFB 478(Munster大学)
    • Year and Date
      2008-06-24
    • Related Report
      2008 Annual Research Report
  • [Presentation] On special value of Ruelle L-function and a regulator2008

    • Author(s)
      K. Sugiyama
    • Organizer
      L-function in Arithmetic and Geometry, SFB478
    • Place of Presentation
      Munster 大学、ミュンスタ
    • Related Report
      2009 Final Research Report
  • [Presentation] A geometric analog of the Birch and Swinnerton-Dyer conjecture for hyperbolic threefolds2007

    • Author(s)
      K. Sugiyama
    • Organizer
      Spectral Analysis in Geometry and Number Theory
    • Place of Presentation
      名古屋大学
    • Related Report
      2009 Final Research Report
  • [Presentation] A geometric analog of the Birch and Swinnerton-Dyer conjecture for a hyperbolic threefold2007

    • Author(s)
      K. Sugiyama
    • Organizer
      Geometry and Quantization
    • Place of Presentation
      Stekulov 研究所、モスクワ
    • Related Report
      2009 Final Research Report
  • [Presentation] A geometric analog of the Birch and Swinnerton-Dyer conjecture for a hyperbolic threefolds2007

    • Author(s)
      K.Sugiyama
    • Organizer
      Spectral Analysis in Geometry and Number Theory
    • Place of Presentation
      名古屋大学
    • Related Report
      2008 Self-evaluation Report
  • [Presentation] A geometric analog of the Birch and Swinnerton-Dyer conjecture for a hyperbolic threefold2007

    • Author(s)
      K.Sugiyama
    • Organizer
      Geometry and Quantization
    • Place of Presentation
      Stekulov 研究所, モスクワ
    • Related Report
      2008 Self-evaluation Report
  • [Presentation] On special value of Ruelle L-function and a regulator2007

    • Author(s)
      K.Sugiyama
    • Organizer
      SFB478
    • Place of Presentation
      Munster 大学, ミュンスタ
    • Related Report
      2008 Self-evaluation Report
  • [Presentation] Properties of an L-function from a geometric point of view2007

    • Author(s)
      K.Sugiyama
    • Organizer
      International school-conference, Geometry and Quantization
    • Place of Presentation
      Moscow,Steklov研究所
    • Related Report
      2007 Annual Research Report
  • [Presentation] A geometric analog of the Iwasawa conjecture for hyperbolic threefolds2006

    • Author(s)
      K. Sugiyama
    • Organizer
      MSJ-IHES joint workshop
    • Place of Presentation
      IHES研究所、パリ
    • Related Report
      2009 Final Research Report
  • [Presentation] A geometric analog of the Iwasawa conjecture for hyperbolic threefolds2006

    • Author(s)
      K.Sugiyama
    • Organizer
      MSJ-IHES joint workshop
    • Place of Presentation
      IHES 研究所, パリ
    • Related Report
      2008 Self-evaluation Report

URL: 

Published: 2006-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi