Budget Amount *help |
¥4,220,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥420,000)
Fiscal Year 2007: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2006: ¥2,400,000 (Direct Cost: ¥2,400,000)
|
Research Abstract |
The key reactive intermediate of borohydride reduction catalyzed by Schiff base-cobalt complexes is proposed to be the dichloromethyl-cobalt hydride with a sodium cation, based on experimental and theoretical studies. It was revealed that chloroform is not the solvent but the reactant that activates the cobalt catalyst. It was found that a catalytic amount of chloroform effectively activated the present catalytic system to convert various ketones into the corresponding reduced product with a high ee in the THF solvent. Furthermore, the theoretical simulation of various axial groups in cobalt complex catalysts predicted that the cobalt-carbene complexes could be employed as efficient catalysts. The newly designed complexes generated from cobalt complex and methyl diazoacetate made it possible to catalyze the enantioselective borohydride reduction in a halogen-free solvent.
|