• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

α行列式と行列変数ゼータ関数の不変式論

Research Project

Project/Area Number 18654005
Research Category

Grant-in-Aid for Exploratory Research

Allocation TypeSingle-year Grants
Research Field Algebra
Research InstitutionKyushu University

Principal Investigator

若山 正人  Kyushu University, 大学院・数理学研究院, 教授 (40201149)

Project Period (FY) 2006 – 2008
Project Status Completed (Fiscal Year 2008)
Budget Amount *help
¥1,800,000 (Direct Cost: ¥1,800,000)
Fiscal Year 2008: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 2007: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 2006: ¥600,000 (Direct Cost: ¥600,000)
Keywordsα-行列式 / 既約分解 / 巡回加群 / パーマネント / ヤコビ多項式 / 表現論 / 量子群 / 不変式論 / α行列式 / リース積 / dual pair / コンテント多項式
Research Abstract

α-行列式の表現論を不変式論,特殊関数の観点から展開した.α=-1のときは,α-行列式は通常の行列式に他ならず,そのGLn-巡回加群は1次元(既約)表現である.α=1のときは,α-行列式はパーマネントであり,そのGLn-巡回加群は対称テンソルが定める既約表現となる.したがって,一般のαに対して,α-行列式が定めるGLn-巡回加群は,これら2つの既約表現を補間するものである.本年度は昨年に続き,とくにα-行列式の整数べきが定めるGLn-巡回加群の研究を行った.
(1)αがgenericのとき,当該加群は全テンソル代数のべき次対称テンソルのn次対称テンソル空間と同値になり可約である.従ってその既約分解の各既約表現の重複度はKostka数で与えられる.(松本詔・若山)
(2)αがgenericでないときには,当該加群は退加するが,その退加の様子を記述するために,ある多項式係数の行列(遷移行列)を研究した.(n=2のとき,遷移行列は1次となり,Jacobi多項式で与えられる.さらに,その根が退化パラメータαを与える.)また,n〓3の場合の例の計算を行った.
(3)木本-史とともに,べきが1のときには,一般のnに対し,退化パラメータαは最高ウェイト(ヤング図形)に対するコンテント多項式で与えられることを示した.また,この退化パラメータαに対して,(リース行列式なる概念を定義し)新しい不変式論を展開した.その他、特殊リース行列の研究を開始した.

Report

(3 results)
  • 2008 Annual Research Report
  • 2007 Annual Research Report
  • 2006 Annual Research Report
  • Research Products

    (14 results)

All 2009 2008 2007 2006 Other

All Journal Article (9 results) (of which Peer Reviewed: 6 results) Presentation (3 results) Book (1 results) Remarks (1 results)

  • [Journal Article] Alpha-determinant cyclic modules and Jacobi polynomials.2009

    • Author(s)
      Masato Wakayama, Kazufumi Kimoto, Sho Matsumoto
    • Journal Title

      Transactions of the American Mathematical Society (in press)

    • Related Report
      2008 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Ruelle type $L$-functions versus determinants of Laplacians for torsion free abelian groups.2008

    • Author(s)
      Masato Wakayama, Nobushige Kurokawa, Yoshinori Yamasaki
    • Journal Title

      International Journal of Mathematics 19(8)

      Pages: 957-979

    • Related Report
      2008 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Period deformations and Raabe's fonnulas for generalized gamma and sine functions.2008

    • Author(s)
      Masato Wakayama, Nobushige Kurokawa
    • Journal Title

      Kyushu Journal of Mathematics 62

      Pages: 171-187

    • Related Report
      2008 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Invariant theory for singular α-determinants2008

    • Author(s)
      K. Kimoto & M. Wakayama
    • Journal Title

      J.Comb.Theo.Ser.A 115

      Pages: 1-31

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Quantum α-determinant cyclic modules of U_q(gl_n)2007

    • Author(s)
      K. Kimoto & M. Wakayama
    • Journal Title

      J.Algebra 313

      Pages: 922-956

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Splitting density for lifting about discrete groups2007

    • Author(s)
      Y. Hashimoto & M. Wakayama
    • Journal Title

      Tohoku Math.J. 59

      Pages: 527-545

    • NAID

      110006469010

    • Related Report
      2007 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Alpha-determinant cyclic modules of gl_n(C)2006

    • Author(s)
      S.Matsumoto, M.Wakayama
    • Journal Title

      J. Lie Theory 16

      Pages: 393-405

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Invariant theory for singular α-determinants

    • Author(s)
      K.Kimoto, M.Wakayama
    • Journal Title

      J. Combinatorial Theory, Ser. A (to appear)

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Quantum α-determinant cyclic modules of U_q(gl_n)

    • Author(s)
      K.Kimoto, M.Wakayama
    • Journal Title

      J. Algebra (to appear)

    • Related Report
      2006 Annual Research Report
  • [Presentation] Arithmetics on Non-commutative harmonic oscillators2009

    • Author(s)
      Masato Wakayama
    • Organizer
      International workshop on verified computations and related topics
    • Place of Presentation
      University of Karlsruhe (TH), Germany
    • Related Report
      2008 Annual Research Report
  • [Presentation] Harmonic analysis on Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials2008

    • Author(s)
      Masato Wakayama
    • Organizer
      Zetas and Limit Laws in OKINAWA 2008
    • Place of Presentation
      沖縄コンベンションセンター
    • Related Report
      2008 Annual Research Report
  • [Presentation] Special values of the spectral zeta functions for the non-commutative harmonic oscillator and elliptic curves2007

    • Author(s)
      M. Wakayama
    • Organizer
      International Conference on Arithmetic Geometry
    • Place of Presentation
      Euler Int.Math.Inst.Saint Petersburg, Russia
    • Related Report
      2007 Annual Research Report
  • [Book] 技術に生きる現代数学2008

    • Author(s)
      若山 正人, 編
    • Total Pages
      210
    • Publisher
      岩波書店
    • Related Report
      2007 Annual Research Report
  • [Remarks]

    • URL

      http://www2.math.kyushu-u.ac.jp/~wakayama/

    • Related Report
      2008 Annual Research Report

URL: 

Published: 2006-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi