ヒルベルト空間の部分空間の配置とディンキン図形のヒルベルト表現の研究
Project/Area Number |
18654028
|
Research Category |
Grant-in-Aid for Exploratory Research
|
Allocation Type | Single-year Grants |
Research Field |
Basic analysis
|
Research Institution | Kyushu University |
Principal Investigator |
綿谷 安男 Kyushu University, 大学院・数理学研究院, 教授 (00175077)
|
Co-Investigator(Kenkyū-buntansha) |
幸崎 秀樹 九州大学, 大学院・数理学研究院, 教授 (20186612)
榎本 雅俊 甲子園大学, 総合教育研究機構, 教授 (70185130)
|
Project Period (FY) |
2006 – 2008
|
Project Status |
Completed (Fiscal Year 2008)
|
Budget Amount *help |
¥3,200,000 (Direct Cost: ¥3,200,000)
Fiscal Year 2008: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2007: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2006: ¥1,100,000 (Direct Cost: ¥1,100,000)
|
Keywords | 部分空間の配置 / ディンキン図形 / 直既約表現 / quiver / ヒルベルト空間 / 直既的な配置 / 有向グラフ |
Research Abstract |
Gelfand-Ponomarevは有限次元空間の4個の部分空間の直既約な配置について、完全分類を行った。全体空間が無限次元のヒルベルト空間の場合は榎本氏と代表者の共同研究で4つの部分空間の既約な配置の非自明な具体例を無限個構成することができた。今回の研究では、さらに、有向グラフ(quiver)に沿ったヒルベルト空間の部分空闇の配置の研究を試みた。有向グラフ(quiver)の頂点と辺をヒルベルト空間とその間の作用素として表すヒルベルト表現を研究する。特に包含写像を考えれば、部分空間を有向グラフに沿って配置する問題を含んでいる。有限次元空間では、直既約な表現が有限個しかないのはディンキン図形のAn,Dn,E6,E7,E8に限るというGabrierの定理がある。この定理を関数解析の手法で無限次元化するのが、大きな目的である。鏡映関手とその双対性を無限次元のヒルベルト空間の枠組みで構成したい。無限次元の直既約なヒルベルト表現の非存在を仮定して,quiverがディンキン図形のAn,Dn,E6,E7,E8に限られることは、去年度に示すことができた。しかしその逆である、quiverがディンキン図形のAn,Dn,E6,E7,E8であれば、無限次元の直既約なヒルベルト表現が存在しないということは、ようやくAnの時に示せたのが本年の成果である。さらにBrennerによる3つの部分空間の配置の標準分解を無限次元で特別なときに示せた。拡大ディンキン図形の無限次元の直既約なヒルベルト表現にたいしては、不足数という数値的不変量をFredholm作用素の指数を使ってE6,E7の時に導入することができた。
|
Report
(3 results)
Research Products
(13 results)