• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometric, Combinatorial, and Representation theoretic study of semi-infinite flag manifolds

Research Project

Project/Area Number 18F18014
Research Category

Grant-in-Aid for JSPS Fellows

Allocation TypeSingle-year Grants
Section外国
Research Field Algebra
Research InstitutionKyoto University

Principal Investigator

加藤 周  京都大学, 理学研究科, 准教授 (40456760)

Co-Investigator(Kenkyū-buntansha) MAKEDONSKYI IEVGEN  京都大学, 理学(系)研究科(研究院), 外国人特別研究員
Project Period (FY) 2018-04-25 – 2020-03-31
Project Status Discontinued (Fiscal Year 2019)
Budget Amount *help
¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 2019: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2018: ¥800,000 (Direct Cost: ¥800,000)
Keywordsカレント代数 / スーパーリー代数 / 半無限旗多様体 / マクドナルド多項式 / 孤空間 / コストカ多項式 / 非対称Macdonald多項式
Outline of Annual Research Achievements

本研究の目的は単純リー代数に付随するカレント代数と呼ばれるリー代数の表現論を幾何学的、組み合わせ論的、表現論的に深く研究することであり、具体的には各々半無限旗多様体、マクドナルド多項式、マクドナルド多項式を次数付き指標として持つ加群たちの性質を調べることであった。

その中で得られたこととしては、以下が挙げられる: 1) 半無限旗多様体上の適当な準連接層の大域切断と非対称マクドナルド多項式の$t = \infty$における特殊化をその次数付き指標として持つ加群の間の同型を示したこと。2) 非対称マクドナルド多項式の自然な内積による直行関係式を$t = 0$と特殊化しようとすると構成から$t =0$への特殊化と$t = \infty$への特殊化の間の双対性を導くが、これが1)で使われた加群を用いると(概ね単純リー代数がsimply-lacedな場合に)代数的に記述できることを見いだしたこと。 3) 半単純代数群$G$の代数的ピーター・ワイルの定理の対応物が$G$の弧空間について得られ、特にその構成がコストカ多項式の代数化との関係を導くことが示されたこと。4) 特殊化しないマクドナルド多項式を代数的に構成する方法を見いだしたこと。

1)と2)はひとつの論文にまとめ、研究期間中に出版が決定した。3)はプレプリントの段階まではゆき、4)は研究分担者の就職により現在中断しているが本来予定していた研究期間の間には論文の形にまとめたいと考えている(ので現時点では若干ぼけた記述となっている)。

Research Progress Status

令和元年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

令和元年度が最終年度であるため、記入しない。

Report

(2 results)
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • Research Products

    (15 results)

All 2019 2018 Other

All Int'l Joint Research (1 results) Journal Article (5 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 5 results) Presentation (9 results) (of which Int'l Joint Research: 8 results,  Invited: 9 results)

  • [Int'l Joint Research] Higher School of Economics(ロシア連邦)

    • Related Report
      2019 Annual Research Report
  • [Journal Article] Representation theoretic realization of non-symmetric Macdonald polynomials at infinity2019

    • Author(s)
      Evgeny Feigin, 加藤周, Ievgen Makedonskyi
    • Journal Title

      Journal fuer die reine und angewandte Mathematik

      Volume: accepted Issue: 764 Pages: 181-216

    • DOI

      10.1515/crelle-2019-0011

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Appendix to Syu Kato and Sergey Loktev: A Weyl module stratification of integrable representations2019

    • Author(s)
      Ryosuke Kodera
    • Journal Title

      Communications in Mathematical Physics

      Volume: 368 Issue: 1 Pages: 113-141

    • DOI

      10.1007/s00220-019-03327-5

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Vertex algebras and coordinate rings of semi-infinite flags2019

    • Author(s)
      Evgeny Feigin, Ievgen Makedonskyi
    • Journal Title

      Communications in Mathematical Physics

      Volume: 印刷中 Issue: 1 Pages: 221-244

    • DOI

      10.1007/s00220-019-03321-x

    • Related Report
      2019 Annual Research Report 2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Representation-theoretic realizations of non-symmetric Macdonald polynomials at infinity2019

    • Author(s)
      Evgeny Feigin, 加藤周, Ievgen Makedonskyi
    • Journal Title

      Journal fuer die reine und angewandte Mathematik

      Volume: 受理済み

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A Weyl module stratification of integrable representations2018

    • Author(s)
      加藤周, Sergey Loktev
    • Journal Title

      Communications in Mathematical Physics

      Volume: 受理済み

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Peter-Well, Howe and Schur-Weyl theorems for current algebras.2019

    • Author(s)
      Ievgen Makedonskyi
    • Organizer
      Kyoto Representation Theory Seminar
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Equivariant quantum $K$-groups of flag manifolds2019

    • Author(s)
      加藤周
    • Organizer
      Program of the 50th Mini-courses and lectures: Quiver variety
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Equivariant quantum $K$-groups of flag manifolds2019

    • Author(s)
      加藤周
    • Organizer
      Representation Theory of Algebraic Groups and Quantum Groups
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Frobenius splitting of semi-infinite flag manifolds2019

    • Author(s)
      加藤周
    • Organizer
      Taipei conference in representation theory VI
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Frobenius splitting of semi-infinite flag manifolds2019

    • Author(s)
      加藤周
    • Organizer
      Representation theory, gauge theory, and integrable systems
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Vertex algebras and coordinate rings of semi-infinite flags2018

    • Author(s)
      Ievgen Makedonskyi
    • Organizer
      Vertex operator algebras and symmetries
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Vertex algebras and coordinate rings of semi-infinite flags2018

    • Author(s)
      Ievgen Makedonskyi
    • Organizer
      Lie algebras, algebraic groups and invariant theory
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Loop structure on equivariant $K$-theory of semi-infinite flag manifolds2018

    • Author(s)
      加藤周
    • Organizer
      GEOMETRY AND REPRESENTATION THEORY AT THE INTERFACE OF LIE ALGEBRAS AND QUIVERS
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Equivariant K-theory of semi-infinite flag manifolds and quantum K-theory of flag manifolds2018

    • Author(s)
      加藤周
    • Organizer
      Quantum K-theory and related topics
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited

URL: 

Published: 2018-05-01   Modified: 2024-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi