• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Einstein metrics and Ricci flow on singular spaces, and study of the Yamabe invariant

Research Project

Project/Area Number 18H01117
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionChuo University

Principal Investigator

Akutagawa Kazuo  中央大学, 理工学部, 教授 (80192920)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥16,250,000 (Direct Cost: ¥12,500,000、Indirect Cost: ¥3,750,000)
Fiscal Year 2022: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2021: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2020: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Fiscal Year 2019: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Fiscal Year 2018: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Keywordsスカラー曲率 / リッチフロー / 山辺不変量 / 山辺計量 / 特異アインシュタイン計量 / edge-cone 球面 / edge-cone 山辺計量 / 特異山辺の問題 / 特異山辺計量 / 特異リッチフロー / 特異型小畠の定理 / edge-cone山辺計量 / edge-cone山辺の問題 / 拡張されたAubinの補題 / Ricci flow / 相対アインシュタイン計量 / 相対山辺計量 / 極小境界計量 / 小畠型定理 / 相対Einstein計量 / 相対山辺不変量 / アインシュタイン計量 / 特異空間 / Einstein計量
Outline of Final Research Achievements

We consider the Yamabe problem on edge-cone n-spheres (S^n, h_a) with cone angle 2πa. When 0 < a < 1, we have proved that any constant scalar curvature metric in the conformal class [h_a] is the pull-back of h_a
by a conformal transformation of (S^n, [h_1]) keeping the singularities S^{n-2} of h_a. When a ≧ 2, we have proved that there is no edge-cone Yamabe metric in [h_a]. When 1 < a < 2, the Yamabe problem is still unsolvable.
We have obtained some results of the Ricci flow with a suitable boundary condition on compact manifolds with boundary. We have also obtained an Obata-type theorem on compact Einstein manifolds with boundary.

Academic Significance and Societal Importance of the Research Achievements

特異集合を持つ特異リーマン多様体の幾何解析的研究は,現在盛んに研究されている分野である.特に山辺計量やEinstein計量に対する研究は重要である.与えられた多様体上で良い性質を持つEinstein計量の存在を示すことは非常に重要であるが,一般にその存在を期待することは不可能である.そこで特異集合を許容する特異Einstein計量が重要となる.またその良さの指標となる山辺不変量の研究も,特異Einstein計量の研究と密接に関係していて,重要である.
本研究はその方向に向けた基礎的な研究となっている.

Report

(6 results)
  • 2023 Final Research Report ( PDF )
  • 2022 Annual Research Report
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • Research Products

    (35 results)

All 2023 2022 2021 2020 2019 2018 Other

All Int'l Joint Research (11 results) Journal Article (9 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 4 results,  Open Access: 2 results) Presentation (7 results) (of which Int'l Joint Research: 2 results,  Invited: 7 results) Book (1 results) Remarks (1 results) Funded Workshop (6 results)

  • [Int'l Joint Research] Stanford University(米国)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Indian Institute f Science, Bangalore(インド)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] Universiry of Oldenburg/Universiry of Oldenburg(ドイツ)

    • Related Report
      2022 Annual Research Report
  • [Int'l Joint Research] フランス/Universit de Paris-Est Creteil(フランス)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] インド/Indian Institute f Science, Bangalore(インド)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] スェーデン/University of Gothenburg(米国)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] 米国/University of California, Irvine(米国)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] Universite Paris 12(フランス)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] University of Regensburg(ドイツ)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] Rafe Mazzeo/Stanford University(米国)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] Ilaria Mondello/Universite Paris Est Creteil(フランス)

    • Related Report
      2018 Annual Research Report
  • [Journal Article] Non-existence of Yamabe minimizers on singular spheres2022

    • Author(s)
      kazuo Akutagawa, Ilaria Mondello
    • Journal Title

      The journal of Geometric Analysis

      Volume: 32 Issue: 7

    • DOI

      10.1007/s12220-022-00923-1

    • Related Report
      2022 Annual Research Report 2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] 幾何解析の問題:山辺不変量の問題2022

    • Author(s)
      芥川和雄
    • Journal Title

      数理解析研究所講究録 2211,複素幾何学の諸問題 II

      Volume: 213

    • Related Report
      2022 Annual Research Report
  • [Journal Article] 幾何解析の問題:山辺不変量の問題2021

    • Author(s)
      芥川和雄(一雄)
    • Journal Title

      RIMS Kokyuroku,「複素幾何学の諸問題II」

      Volume: 2211

    • Related Report
      2021 Annual Research Report
  • [Journal Article] 境界付き多様体上のリッチフロー2021

    • Author(s)
      芥川和雄(一雄)
    • Journal Title

      2021年度日本数学会秋季分科会,総合講演アブストラクト

      Volume: 1

    • Related Report
      2021 Annual Research Report
  • [Journal Article] An Obata-type theorem on compact Einstein manifolds with boundary2021

    • Author(s)
      Kazuo Akutagawa
    • Journal Title

      Geometriae Dedicata

      Volume: 213 Issue: 1 Pages: 577-587

    • DOI

      10.1007/s10711-021-00598-y

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] The Yamabe invariant2021

    • Author(s)
      Kazuo Akutagawa
    • Journal Title

      Sugaku Expositions

      Volume: 34

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] A gap theorem for positive Einstein metrics on the four sphere2019

    • Author(s)
      K. Akutagawa, H. Endo, H. Seshadri
    • Journal Title

      Mathematische Annalen

      Volume: 373 Issue: 3-4 Pages: 1329-1339

    • DOI

      10.1007/s00208-018-1749-x

    • Related Report
      2019 Annual Research Report 2018 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] 特異球面上の山辺計量の非存在とcsc計量族の小畠型定理2019

    • Author(s)
      Kazuo Akutagawa
    • Journal Title

      2019年度福岡大学微分幾何研究集会,報告集

      Volume: 1

    • Related Report
      2019 Annual Research Report
  • [Journal Article] Obata-type theorems on compact Einstein manifolds with boundary2019

    • Author(s)
      Kazuo Akutagawa
    • Journal Title

      2018年度福岡大学微分幾何研究集会報告集

      Volume: 1

    • Related Report
      2018 Annual Research Report
  • [Presentation] The Ricci flow on manifolds with boundary and finite singular time2021

    • Author(s)
      芥川和雄(一雄)
    • Organizer
      東京工業大学「東工大幾何セミナー」
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 幾何解析の問題2021

    • Author(s)
      芥川和雄(一雄)
    • Organizer
      研究集会「複素幾何学の諸問題II」
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 境界付き多様体上のリッチフロー2021

    • Author(s)
      芥川和雄(一雄)
    • Organizer
      2021年度日本数学会秋季総合分科会,総合講演
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 特異球面上の山辺計量の非存在とcsc計量族の小畠型定理2019

    • Author(s)
      Kazuo Akutagawa
    • Organizer
      2019年度福岡大学微分幾何研究集会
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Obata-type theorems on compact Einstein manifolds with boundary2019

    • Author(s)
      Kazuo Akutagawa
    • Organizer
      研究集会:リーマン幾何と幾何解析
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Edge-cone Einstein metrics and Yamabe metrics2018

    • Author(s)
      Kazuo Akutagawa
    • Organizer
      国際研究集会:The 10th MSJ-SI: The Role of Metrics in the Theory of Partial Differential Equations
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] An Obata-type theorem on compact Einstein manifolds with boundary2018

    • Author(s)
      Kazuo Akutagawa
    • Organizer
      2018年度福岡大学微分幾何研究集会
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Book] 幾何学百科 II 幾何解析2018

    • Author(s)
      芥川和雄
    • Total Pages
      425
    • Publisher
      朝倉書店
    • Related Report
      2018 Annual Research Report
  • [Remarks] Kazuo Akutagawa

    • URL

      https://sites.google.com/site/kazuoakutagawa/

    • Related Report
      2019 Annual Research Report
  • [Funded Workshop] 「Geometric Analysis」ドイツ・レーゲンスブルグ大学2023

    • Related Report
      2022 Annual Research Report
  • [Funded Workshop] 「Collaborative workshop on Geometric Analysis」アメリカ・スタンフォード大学2023

    • Related Report
      2022 Annual Research Report
  • [Funded Workshop] 第2回日独友好幾何学研究集会「Geometric Analysis」」2021

    • Related Report
      2021 Annual Research Report
  • [Funded Workshop] 第2回日独友好幾何学研究集会「Geometric Analysis」2020

    • Related Report
      2020 Annual Research Report
  • [Funded Workshop] The First Geometry Conference for Friendship of Japan and Germany2019

    • Related Report
      2019 Annual Research Report
  • [Funded Workshop] Geometric Analysis in Geometry and Topology 20182019

    • Related Report
      2018 Annual Research Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi