• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies on discrete quasi-integrable systems

Research Project

Project/Area Number 18H01127
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionThe University of Tokyo

Principal Investigator

Tokihiro Tetsuji  東京大学, 大学院数理科学研究科, 教授 (10163966)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥17,030,000 (Direct Cost: ¥13,100,000、Indirect Cost: ¥3,930,000)
Fiscal Year 2021: ¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2020: ¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2019: ¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2018: ¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Keywords離散準可積分系 / co-primeness / 離散力学系 / 超離散系 / Hietarinta-Viallet方程式 / ファジーセルオートマトン / co-primeness条件 / Hietarinta-Viallet 方程式 / セルオートマトン / 離散方程式 / analitic reduction / 離散可積分系 / 準離散可積分系 / 線形化可能系 / 交通流 / 準可積分系 / 代数的エントロピー / Laurent性 / 準可積分性
Outline of Final Research Achievements

We extended the discrete KdV equation so that it has the co-primeness property, which is considred as a quasi-integrable extension of the discrete KdV equation. Then, it was proved that the discrete equation is a two-dimensional extension of the Hietarinta-Viallet equation, and its reduction involves the Hietarinta-Viallet equation and its generalized eequations of higher orders. We also proved the relation between cluster algebras and co-primeness, which is an algebraic formulation of the singularity confinement. Furthermore, we succeeded to construct the quasi-integrable system of discrete equations with the same properties in arbitrary dimensions.
As an application, we proved the stability of the traffic flow model obtained by Fuzzification of the Rule 184 cell automaton (FCA184). The generalization of FCA184 incorporates the slow-to-start property and analytically determines the value of the density of the phase transition from the free-flow phase to the congested phase.

Academic Significance and Societal Importance of the Research Achievements

非線形可積分系は,一般には解くことのできない非線形な系の中で,厳密解を構成できる方程式系であり,方程式の持つ美しい代数構造や解が「見える」ことにより,純粋数学から工学まで広い分野にわたって応用されている.特に離散可積分系は,連続系を極限として含み,その応用範囲も広い.一方で,非線形系の中では特殊な系であり,ほとんどの系には可積分性はない.本研究成果は,特異点閉じ込め性という可積分性判定条件を代数的に再定式化することによって離散可積分系を一般化し,その枠を超えた新たな性質の良い離散系を構成したものであり,学術上も応用上もその意義は大きく,他分野へも影響を与えうるものと考えられる.

Report

(5 results)
  • 2022 Final Research Report ( PDF )
  • 2021 Annual Research Report
  • 2020 Annual Research Report
  • 2019 Annual Research Report
  • 2018 Annual Research Report
  • Research Products

    (7 results)

All 2023 2021 2020 2019 2018

All Journal Article (6 results) (of which Peer Reviewed: 6 results,  Open Access: 2 results) Presentation (1 results) (of which Int'l Joint Research: 1 results,  Invited: 1 results)

  • [Journal Article] Slow-to-start CA 交通流モデルの安定性2023

    • Author(s)
      時弘哲治
    • Journal Title

      武蔵野大学数理工学センター紀要

      Volume: 8

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Rule 184 fuzzy cellular automaton as a mathematical model for traffic flow2021

    • Author(s)
      Higashi Kohei、Satsuma Junkichi、Tokihiro Tetsuji
    • Journal Title

      Japan Journal of Industrial and Applied Mathematics

      Volume: 38 Issue: 2 Pages: 579-609

    • DOI

      10.1007/s13160-021-00461-3

    • NAID

      210000159939

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Algebraic entropy of a multi-term recurrence of the Hietarinta-Viallet type2020

    • Author(s)
      Ryo Kamiya, Masataka Kanki, Takafumi Mase, and Tetsuji Tokihiro,
    • Journal Title

      RIMS Kokyuroku Bessatsu

      Volume: B78

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Cohesive and anisotropic vascular endothelial cell motility driving angiogenic morphogenesis2019

    • Author(s)
      Takubo Naoko、Yura Fumitaka、Naemura Kazuaki、Yoshida Ryo、Tokunaga Terumasa、Tokihiro Tetsuji、Kurihara Hiroki
    • Journal Title

      Scientific Reports

      Volume: 9 Issue: 1 Pages: 1-9

    • DOI

      10.1038/s41598-019-45666-2

    • NAID

      120006709405

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A two-dimensional lattice equation as an extension of the Heideman-Hogan recurrence2018

    • Author(s)
      Ryo Kamiya, Masataka Kanki, Takafumi Mase, and Tetsuji Tokihiro
    • Journal Title

      J. Phys. A: Math. Theor.

      Volume: 51 Issue: 12 Pages: 125203-125203

    • DOI

      10.1088/1751-8121/aaad47

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the Coprimeness Property of Discrete Systems without the Irreducibility Condition2018

    • Author(s)
      Kanki Masataka、Mase Takafumi、Tokihiro Tetsuji
    • Journal Title

      Symmetry, Integrability and Geometry: Methods and Applications

      Volume: 14 Pages: 065-065

    • DOI

      10.3842/sigma.2018.065

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] Mathematical model for the dynamics of endothelial cells in angiogenesis2019

    • Author(s)
      Tetsuji Tokihiro
    • Organizer
      The 38th JSST Annual International Conference on Simulation Technology
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi