metabolism-dependent microrheology of glass-forming cytoplasm
Project/Area Number |
18H01189
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 13040:Biophysics, chemical physics and soft matter physics-related
|
Research Institution | Kyushu University |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥17,550,000 (Direct Cost: ¥13,500,000、Indirect Cost: ¥4,050,000)
Fiscal Year 2020: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥8,190,000 (Direct Cost: ¥6,300,000、Indirect Cost: ¥1,890,000)
|
Keywords | マイクロレオロジー / 非平衡 / 細胞質 / アクティブガラス / アクティブマター / 非平衡メカニクス / 非平衡散逸 / 非平衡力学 / フィードバックマイクロレオロジー / 細胞質ガラス / アクティブ流動化 / 代謝 / 揺らぎ応答 / 細胞 |
Outline of Final Research Achievements |
Cytoplasm forms glass when metabolic activities are lost, but the living cytoplasm maintains fluidity. Clearly, activeness of living systems profoundly affects their mechanical properties, but the underlying physical mechanism is largely unknown. That is because statistical mechanics common at thermodynamic equilibrium do not apply to living cytoplasm since it is driven out of equilibrium by the mechanical energy derived from metabolism. In this study, in order to elucidate the physical mechanism, we reproduced the phenomenon by creating an in vitro model that can control the non-equilibrium activity by exchanging the metabolites and byproducts. By conducting microrheology experiments, it was found that a suspension that exhibits biological turbulence fluidizes as the violation of the fluctuation-dissipation theorem is pronounced. Furthermore, it was found that even the thermal fluctuation at high frequencies is enhanced significantly with metabolic activities.
|
Academic Significance and Societal Importance of the Research Achievements |
生き物らしさは、複雑な散逸構造を内包する非平衡系である細胞内部における、生体物質の力学挙動に宿る。しかしながら、科学の一般的な方法論である要素還元主義が通用しないメカニズムに基づくために、その詳細は神秘のベールに包まれている。本研究では、細胞内部の非平衡環境を模したモデル系を構築する新しい方法論を確立した。非平衡系の力学を研究する新しい方法論であり、人類が追究してきた「生命の根源」に対する現代的な解を与えるための実験的成果に繋がる。
|
Report
(4 results)
Research Products
(36 results)